The Quantum Schur Transform

NSF CBA Review – October 12, 2006

Aram Harrow
Univ. of Bristol, CS $\begin{pmatrix} \bullet \\ \bullet \end{pmatrix} + \begin{pmatrix} \bullet \\ \bullet \end{pmatrix} + \begin{pmatrix} \bullet \\ \bullet \end{pmatrix}$ I. Chuang
MIT, Physics

The Search for new Q. Algorithms

- Current algorithms:
- **Deutsch-Jozsa** '92: $f(0) \oplus f(1)$
- Simon '94: period finding
- Shor '95: factoring
- Kitaev '96: hidden subgroup
- Grover '96: search
- <u>Hallgren</u> '02,...: Pell's equation $ax^2+1=y^2$

QFT Based

Beyond Shor's Algorithm?

#Exponential speedup algorithms

Is there any structure beyond the Quantum Fourier Transform (abelian Hidden subgroup methods)?

#QFT: Extract global properties New result: the quantum Schur transform

(Bacon, Chuang, Harrow, Phys. Rev. Lett., to appear Oct. 2006)

Symmetries of (ℂ^d)^{⊗n}

- <u>Problem</u>: What are the global properties of <u>n copies</u> of $|\psi\rangle$?
- <u>Example</u>: Two spins under U⊗U singlet or triplet

• <u>Fact</u>: λ and q are insufficient for n>2; also need perm. p

The Schur Transform

Schur transform results

- <u>Status</u>: Efficient q. circuit for Schur transform constructed (Bacon, Chuang, & Harrow, quant-ph/0407082; PRL Oct'06)
- <u>Input</u>: n copies of $|\psi\rangle$
- <u>Output</u>: Total "spin" and symmetry irrep. classification

Schur transform: Applications

Universal entanglement concentration:

Given $|\psi_{AB}\rangle^{\otimes n}$, Alice and Bob both perform the Schur transform, measure λ , discard Q_{λ} and are left with a maximally entangled state in \mathcal{P}_{λ} equivalent to $\approx nE(\psi)$ EPR pairs.

Universal data compression:

Given $\rho^{\otimes n}$, perform the Schur transform, weakly measure λ and the resulting state has dimension $\approx \exp(nS(\rho))$.

State estimation:

Given $\rho^{\otimes n}$, estimate the spectrum of ρ , or estimate ρ , or test to see whether the state is $\sigma^{\otimes n}$.