

Internet-Zero Future and Past

Danny Cohen Sun Microsystems Oct-1-2004

Outline

- I-0: The Future
- Problems and Approaches
- I-1: Lessons from the Past
- Summary

Future Buildings

Many Sensors Many Actuators Central Logic Internet Access

The I-0 Vision

Many Sensors Many Actuators Central Logic **Internet Access** Many Vendors Extensible functionality **Extensible devices** Secure operation

Problems

- How to get many vendors to produce interoperable devices?
- How to secure it? How to deny accidental access by neighbors? How to deny malicious access by others?

I-o Approach

- Steal relevant ideas and approaches from Internet-1
- Steal their security system
- Steal their approach to vendor independence
- Steal their approach to extensibility

Lessons from I-1

- Extensibility (performance)
- Extensibility (functionality)
- Extensibility (users)
- Extensibility (vendors)
- Security

"Those who ignore history are doomed to repeat the mistakes of the past"

Performance

The Internet started with 50Kbps, and is approaching now 1Tbps: about 7 orders of magnitude.

The Secret: The internet protocols do not specify performance. (Separation of the PHY layer)

Functionality

The secret: The Internet protocols are designed to be general and extensible, rather than seeking the ultimate efficiency.

Reliable vs. Realtime

- Packet networks can support both reliable and realtime flows of information.
- These flows require different approaches to flow control, to buffers, and to error handling.
- Reliability increases latency.

Splitting TCP

The original TCP (v1 and v2) was designed for reliable delivery of information, using both enroute and end/end means.

Splitting TCP

The original TCP (v1 and v2) was designed for reliable delivery of information, using both enroute and end/end means.

As of v3 (and v4) the enroute protocol is called IP, and is separate from the end/end protocol which is called TCP.

Fast IP, reliable TCP

First there was IP, then packet-voice was implemented over it, called Voice-Over-IP.

First there was IP, then packet-voice was implemented over it, called Voice-Over-IP.

Actually first there was packet-voice then IP was implemented under it, to support it.

VoIP or IPuV?

First there was IP, then packet-voice was implemented over it, called Voice-Over-IP.

Actually first there was packet-voice then IP was implemented under it, to support it.

Should it be called IP-Under-Voice?

Users

Initial fields were too short. The explosion in the number of users is possible because of the decentralized distributed nature of the Internet and its performance extensibility.

Vendors

The Internet protocols are designed to be general, open, and inclusive. Any device can be connected if its interfaces complies with the open specifications (RFC). This was a unique idea then.

problem

Security The bad news: It's a very tough

- problem
- The good news: Smart people work on it around the internet
- If we use IP we can steal their security solutions

• Specify the I-0 protocol(s)

- Specify the I-0 protocol(s)
- Specify I-0 devices

- Specify the I-0 protocol(s)
- Specify I-0 devices
- Encourage vendors to produce I-0 devices

- Specify the I-0 protocol(s)
- Specify I-0 devices
- Encourage vendors to produce I-0 devices
- Work with I-0 vendors (UL)

Slide