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Distributed Control Design for Spatially
Interconnected Systems

Raffaello D’Andrea and Geir E. Dullerud

Abstract—This paper deals with analysis, synthesis, and imple- If one attempts to control these systems using standard
mentation of distributed controllers, designed for spatially inter-  control design techniques, severe limitations will quickly be

connected systems. We develop a state space framework for posings -y ntered as most optimal control techniques cannot handle
problems of this type, and focus on systems whose model is spatially

discrete. In this paper, analysis and synthesis results are developedSyStems of very high dimensioand with a large number

for this class of Systems using théz_induced norm as the perfor- Of inputS and OutputS. It iS a|SO not feaSib|e to COI’]tI’Ol these
mance criterion. The results are stated in terms of linear matrix ~systems with centralized schemes—the typical outcome of most
inequalities and are thus readily amenable to computation. A spe- gptimal control design techniques—as these require high levels
cial implementation of the resulting controllers is presented, which - o ¢onpectivity, impose a substantial computational burden, and
is particularly attractive for distributed operation of the controller. . o . .

are typically more sensitive to failures and modeling errors

Several examples are provided to further illustrate the application .
of the results. than decentralized schemes.

Index Terms—DPistributed control, H ., interconnected systems, In order for any optimal control technique t(_) be_ suc-
linear matrix inequalities (LMIs). cessful, the structure of the system must be exploited in order
to obtain tractable algorithms. In this paper, we present a
state-space approach to controlling systems with a highly
structured interconnection topology; in particular, we consider

ANY systems consist of similar units which directlylinear, spatially invariant systems that can be captured as

interact with their nearest neighbors. Even when the§f@ctional transformations on temporal and spatial operators.
units have tractable models and interact with their neighbdBy doing so, many standard results in control—such as the
in a simple and predictable fashion, the resulting systelalman—Yakubovich—Popov (KYP) Lemm&,optimization,
often displays rich and complex behavior when viewed asaad robustness analysis—can be generalized accordingly. The
whole. There are many examples of such systems, includigigite space formulation yields conditions that can be expressed
automated highway systems [37], airplane formation fliglats linear matrix inequalities (LMIs) [7], resulting in tractable
[42], [9], satellite constellations [39], cross-directional contrafomputational tools for control design and analysis.
in paper processing applications [40], and very recently, The types of problems considered in this paper have a long
micro-cantilever array control for massively parallel dathistory. In [30], optimal regulation for a countably infinite
storage [31]. One can also consider lumped approximationsrefmber of objects is considered by employing a bilateral
partial differential equations (PDEs)—examples include thé-transform, which is analogous to the spatial shift operators
deflection of beams, plates, and membranes, and the tempértioduced in this paper. In [8], it was shown that discretization
ture distribution of thermally conductive materials [41]. of certain classes of PDEs result in control systems defined on

An important aspect of many of these systems is that sensingdules, and that the resulting structure can be exploited to
and actuation capabilities exist at every unit. In the examplegduce computational effort.
above, this is clearly the case for automated highway systemsRecently, [3], control problems for spatially invariant systems
airplane formation flight, satellite constellations, and cross-di¢vith quadratic performance criteria (such’ds andH..) are
rectional control systems. With the rapid advances in mictackled by extending familiar frequency-domain concepts for
electromechanical actuators and sensors, however, we will seme-dimensional systems. The control design problem is then
be able to instrument systems governed by partial different&dlved for a parameterized (over frequency) system of finite-
equations with distributed arrays of actuators and sensafémensional systems. Itis also shown that the optimal controller
rendering lumped approximations with collocated sensors ahas a degree of spatial localization (similar to the plant) and can
actuators valid mathematical abstractions. therefore be implemented in a distributed fashion.

Robust stability analysis problems for multidimensional sys-
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problems, is exploited to apply the results in [3] and obtaifihe inner product oif, is defined as

a computationally attractive practical control design method- oo

ology to address performance and robustness issues. (u,v)z, ::/ (u(t),v(t))e, dt 4)
The paper is organized as follows. We introduce the notation 0

and the basic concepts used throughout the paper in Sectiog A, corresponding norfiu| ¢, := \/m

The class of systems considered in this paper are described ig\;iyy 5 slight abuse of notation, a signza] € L, can thus

Section Ill. Analysis conditions are then presented in Section INe onsidered a function df + 1 independent variables, =
which are used in Section V for controller design. An in-depth) ;. s1,...,sr). Thus, for fixedt ands, u(t) is an element of

Qiscussion on controller implelmentatio.n may pe found in Seg:z— andu(t, s) is a real-valued vector.
tion VI. Several examples are included in Section VI, and con- | ot u(t,s) be scalar valued. We can define the spatial shift

cluding remarks are found in Section VIII. operatorsS;, acting on signals i, as follows:
Il. PRELIMINARIES (Siu(t))(s) == u(t,s1,...,8i +1,...,51), i=1,...,L
The set of integers is denotdd The set of real numbers is ®)

denoted?; R™ denotes the nonnegative subset. The notatien e e always work with signals that have a finite spatial

R* will be used to denote real valued, finite vectors whose Siﬁ"orm at any instant in time, we sometimes work with signals
is either clear from context or not relevant to the discussion. Vfﬁ’at do not have a finite ovérall norm. We thus defiiéo be

will often use the short-hand notatien= (v;, v2) to capture a the set of functions mappirg* to ¢, for which the following
vector with several (not necessarily scalar) components. quantity is finite for event > 0:

The space of, by m matrices is denoteR™*™; the space

of symmetricn by n matrices is denotelg™". Then by n T 9

identity matrix is denoted,,; when the dimension is clear from / ||“(t)||/2 dt. (6)

context, it is simply denoted. Given real symmetric matrix . . .

M,M > 0(> 0) denotes property* Mv > 0(> 0) for all An operatorF' on /s is said to be bounded if

v # 0. The maximum singular value of a mattikis denoted |IFz||e,

o(4). IFlle. = swp_ @
We are dealing with signals which are vector valued functions e ’

indexed byL + 1 independent variabled: = d(t,s:,...,s), Where||F||,, is used to denote the induced gain of operdtor

wheret denotes the temporal variable, and thethe spatial The adjoint of a bounded operatBris denotedf™, and is the
variables. We restrict ourselves to continuous time systems, atidque operator which satisfi¢s, Fv),, = (F*u,v), for all
taket to be inR*. We also restrict ourselves to lumped systems, v € f>. A bounded operataF is said to be invertible o,
and only consides; that are integer valued. In particular, eacfif there exist bounded operatol;, and Hg such thatHpF

of thes; can either be ifZ, which captures infinite spatial extentandFHy, are the identity operators. Similar definitions hold for

in dimension, or in some finite sef1, ..., N;}, which captures operators onC,.
periodicity of periodN; in spatial dimension. We thus takes; Itis useful to extend the definition of an operaloon £, to
to be inD;, whereD; is eitherZ or {1,..., N;}. Whens; € the space in the following natural way:

{1,...,N;}, modular arithmetic is usedV; + 1 := 1. The

L-tuple (s1,...,sz) is denoted bys. (Fu)(t) :=Fu(t) Vuel VieR (8)
We often consider signals at a fixed time; it is thus conveniegt), example(S;u)(t,s) == u(t, s1,...,5 + 1,....s1).

to separate the spatial and temporal parts of a signal, which mo-

tivates the following definitions: . | NTERCONNECTEDSYSTEMS

Definition 1: The spaces is the set of functions mapping ) _ o
D; x --- x Dy, to R® for which the following quantity is finite: _ We nextmtrqduce th_e systems considered in thls_p_a_per. Inthe
interest of clarity, we first present the relevant definitions and

Z Z 2(s)* x(s). 1) results for systems in one spatial dimension, i.e., the signals in
question are of the formd = d(t,s), wheres € D. Extensions

s1€Dy sp €D . . .
to more than one spatial dimension are deferred to the end of

The inner product o, is defined as this section.
(T,9)e, = Z Z 2(s)*y(s) ) A. Periodic and Infinite Interconnections
i 2 T “
s1€D; s,€D Consider the diagram in Fig. 1. It consists of a finite dimen-
sional, linear time-invariant system governed by the following
with corresponding normiz||e, := /{(x, x)e,. state-space equations:

Definition 2: The spacel; is the set of functions mapping

R™ to ¢, for which the following quantity is finite: (1, ) Arr Ars Bt | [z(ts)

w((t./ s)) = | Ast Ass Bs UE g
oo t,s C C D d(t,s
/ lu(®)Ilz, dt. (3) Za:<o7s> = xo(s;re R )
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where

s = 09 wen =209 a0
ands is fixed. We assume that, (¢,s) andw,(¢,s) are the
same size, and that (¢, s) andw_(t, s) are the same size. We
next consider two types of interconnections based on identical -
copies of the basic building depicted in Fig. 1.

1) Periodic Interconnection:Let the number of units b4’ :
1 < s < N. Define aperiodic interconnectioms follows:

Fig. 1. Basic building block, one spatial dimension.

’U+(S+1):’LU+() ISSSN_I (11)

vi(s =1) =wy(s=N) (12)
v_(s —1) =w_(s), 2<s<N (13)
(s = M) — (s = 1. (14)

This interconnection is depicted for = 20 in Fig. 2. Once the
interconnection has been formed, the system inputs are simpl
d, and the system outputs ate v andw can be considered
internal system variables.

2) Infinite Interconnection:Consider an infinite number of
units, interconnected as follows:

vie(s+1)=wy(s) v_(s—1)=w_(s) Vs e Z (15)

Fig. 2. Periodic interconnection.

This is depicted in Fig. 3. This type of interconnection is sim-
ilar to the one considered in [30], where a control system is de
signed for an infinite number of vehicles. As was pointed out in
[30], and more recently in [3], an infinite approximation may be
sufficient when dealing with a large number of systems. In par:
ticular, the scale of influence of localized effects is often much
less than the scale of the whole system. Even if the uncontrolle
system does not satisfy this property, it is likely that the con-
trolled system will. Fig. 3. Infinite interconnection.

There is another important reason for considering infinite
extent system; as is discussed in Section IV-D, if the infinite Unless explicitly stated, we will assume that the initial con-
extent system is well-posed, stable, and contractive—notio#i§on for the stater(0,s) = 0. By eliminating interconnection
to be defined in Section IV—these properties are inherita@riablesy, we can express the system as
by all periodic interconnections, irrespective of the number (1) = Au(t) + Bd(t) (18)

of subsystems.
z(t) = Cz(t) + Dd(t) (29)

B. System Realization

. h
In (9) and (10), letng denote the size of the subsystem statevg ere

z(t,s), my the size of interconnection variables (t,s) and | A B] _ |:ATT BT:| n |:ATS:|
w (t,s), andm_ the size of interconnection variables(t,s) [C D Cr D Cs
andw_(¢,s). Letm = (mg,m4, m_), and define the fol- X (Agm — Ass) '[Ast Bs| (20)

lowing structured operator ofy:
and it is assumed th@As ,, — Asg) is invertible oné,. This

Ag .y = SIm, _10 (16) assumption is equivalent to assuming that the interconnection is
0 ST I well-poseda physically motivated concept that is formalized in

The role ofmg in m will become apparent shortly. Note thatoection IV-A. Note that well-posedness implies that operators
we can now express the interconnection s ,,v(t))(s) = 4B, C, andD are bounded. Define
w(t,s), and we may thus write the interconnected system as

A= [ATT ATS:| B = |:BT:| C:=[Cr Cs]

follows: Ast  Ass Bs
z(t,s) Arr Ars Br| |z(ts) (1)
(Asmv(t))(s) | = | Ast Ass Bs | |v(t,s) and
z(t,s) Cr Cs D d(t,s)

. (d .
Z‘(O,S) = J;O(S)_ (17) Am L dlag <EI‘WL07 SIm+7 S I’m) (22)
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Fig. 4. Periodic interconnection in both spatial dimensions.

where operatoB is extended tcC, as per (8). Given constantAg ,, is defined as

matricesA, B, C, and D of compatible dimension, and three-

tuplem, we may thus express a system in the following succinéss.m := diag (S1lm,,S7 " In_,, S2lm,

form: Sy o ST ). (27)

[(A:E;)S,s)] _ [é g ] [Zg 3] (23)  Similarly, Ar, is defined as follows:

d
A, = di — Ty S1lm,, ST
wherer(t,s) = (z(t,s),v(t,s)). The system generated by 1ag(dt o1 PHma B S

A,B,C,D, andm is denotedM := {A,B,C,D,m}. In B B
o : : Solp,, Sy ..., S, . (28)
order to simplify notation, we will use\1 to denote both the 2img,y N2 fmog -y DL fmop
system of equations generated hyB, C, D, andm, andthe
actual matricesA, B, C, D and tuplem. It will be clear from
context which meaning is being ascribed/te. IV. WELL-POSEDNESS STABILITY , AND PERFORMANCE

There are three main considerations when analyzing a
C. Interconnected Systems in Higher Dimensions system: well-posedness, stability, and performance. In this
ection, these concepts are defined, and an LMI condition
Qr establishing well-posedness, stability, and performance is
{r?sented.

The basic building block depicted in Fig. 1, and the periodi
and infinite interconnections described earlier, can readily
extended to more than one spatial dimension. For example,p

two dimensions = (s, s2) and A. Well-Posedness

Simply put, a system is well-posed if it is physically real-
Wt 51, 82) = ([1)4_71(15781782)] [Uﬂ—,?(tvshs?)D (24) izable. The following simple examples illustrate the concept
v—a(t, 51, 82) v a(t, 51, 82) of well-posedness. Consider the feedback interconnection in
wit, 51, 52) = ([w+’1(t, s1, 52)] {w+,2(t, 81, sz)D . Fig. 5, where all signals are simply a function of time. Rt
T w_ 1(t, $1,82) w_ o(t,s1,52) andP, be unity gain systemsu; (t) = v1(¢), wa2(t) = va(t).
(25) Thisinterconnection is not well-posed because there do not exist
solutions to the loop equations for all possible exogenous sig-

. . . . .. nal n .
Various interconnections can then be defined; the details arag\fnl andn,
ow let P,

omitted. For example, a periodic interconnection in both spat'&al be a unity gain system, and B, be a linear

. S : S X . : ime invariant system with transfer functiéh(¢) = 1 — 1/¢.
d|men_5|ons IS deplcte_d In Fig. z}—m t_he interest of f:larlty, onl¥his interconnection is also not well-posed because the resulting
a portion of the resulting torus is depicted and the inpasd

. . transfer function from exogenous signal to interconnection
the outputs; have beer_1 Om'tted from the diagram. signalv; is not proper, and in fact equaloThere is thus differ-

In terms of the realization of a system, we can proceed tiating action from one of the closed-loop system inputs to one
follows. For a givenm of the closed-loop system outputs (all the closed-loop dependent
variables are considered outputs; w1, v, ws). The reader is
(mg,my,m_1,ma,m_o,...,mp,m_r) (26) referred to [44] for an in-depth discussion of well-posedness.
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Fig. 5. Standard interconnection.

Fig. 6. Test for well-posedness, one spatial dimension, periodic

We can extend the definition of well-posedness in [44] to tha ereonnection.

systems considered in this paper.

Definition 3: Consider a system with signalsnjected atthe the reader is referred to [10] and [4] for details. For the reader
interconnection points not familiar with semigroup theory, the key point is that the
boundedness &k, B, C, andD allows us to formally treat these

i(t,s) Arr Ars Br | fa(ts) systems analogous to their finite dimensional counterparts. Also
w(t,s) | = | Ast Ass  DBs v(t,s) | (29) note thatA B, C, and D are bounded since the underlying
z(t,s) Cr Cs D d(t,s) NS

spatial dynamics being considered are discrete; this should be
(Asmv(t))(s) = w(t,s) +n(t;s). (30) compared with spatially continuous systems which typically
A system is said to berell-posedf there exist strictly positive have unbounded system operators [10].
numberss andT such that for any inputs andd which satisfy A systemM is said to bestableif there exist and/? greater
1n(8)]le, < 6, ||d(t)[|e, < & forall ¢ in [0, T], there exist unique than zero such that for al
signalsz, v, w, andz which satisfy (29) and (30), witk(t =
0) = 0 and norm constraints llexp(A)le, < avexp(—pt). (34)

lo()lle; < Lllw(t)lle, < 1,[12(E)|le, <1 forallt € [0,T].  This is often referred to as exponential stability [10].
(31)

The interpretation of well-posedness is equivalent to the stacr:f— Performance

dard one [44]: there must exist unique solutions to the systemWhen a system\ is stable, we defin@I to be the oper-
equations when signals are injected anywhere in the loop.ai9r which maps/ € L, to z € L for zero initial condi-
addition, on a sufficiently small time interval, the gain from sigtions. The induced, gain of a bounded syste is denoted
nals injected anywhere in the loop to all system outputs must &I || c, . When this gain is less than one, systéihis said to be
bounded. Thisis depicted in Fig. 6 for a periodic interconnectig®ntractive Contractiveness is the performance measure used
in one spatial dimension. The proof of the following stateme#firoughout the paper; in particular, when we consider control
is found in the Appendix. design in Section V, the objective will be to design a controller
Proposition 1: A system is well-posed if and only if Which renders the closed-loop system contractive.
(As.m — Ass) is invertible ons.
We will always require that a given system is well-posed?. Analysis Condition for Well-Posedness, Stability, and
conditions for establishing well-posedness are presented in Seerfformance

tion 1V-D. One method for ensuring system well-posedness isGijven a system\t = {4, B, C, D, m}, the equations gov-
to simply require that no direct feed-through terms exist in agtning the evolution of the system can be partitioned according
interconnection(Ass = 0), sinceAs n, is always invertible. g the spatial and temporal componentgx,, as per (17). The

The physical interpretation of this requirement is that informatata can further be partitioned to reflect the structurAgf,:
tion transfer among the subsystems is bandwidth limited.

. [ Ass,, Ass,., -+ Ass,_,
B. Stability Ass ., Ass_,_, - Ass.,_,
For a well-posed system, operatafs B, C, and D are Ags =t .
bounded, and we may readily write down the solution to (18)
for some intitial conditionzy € ¢5: :ASS—LJ Ass_p o o0 Ass_,
‘ AsT, Bs,
z(t) = exp(At)x —I—/ exp(A(t—7))Bd(7)dr (32) AsT Bs_,
(1) = exp(At)zo + | exp(Alt ~ 7)Bd(r) aor: | 5T pen | -
whereexp(At) is the continuous semigroup defined by ' '
| AsT_, Bs_,
exp(At) =Y (AH" t') (33) Ars =:[Ars, Ars, Ars_, ]
=0 ™ Cs=:[Cs, Cs_, -+ Cs_.| (36)
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Define the matrices as shown in

[Ass,, Ass, Ass,, Ass,
0 I 0 0
A'S"S = )
Ass,, Ass, Ass,, Ass, .,
L O 0 0 I
[ AsT, Bs,
0 0
Afp = | Bf = | : 37)
Ast, Bs,
L O 0
I 0 0 0
Ass—l,l Ass—l,—l ASS—I,L ASS—I,—L
Ags = ..
0 0 S I 0
Ass ., Ass . ., Ass ., Ass .,
0 0
Ast_, Bs_,
Agr = : By = (38)
0 0
Ast Bs_,
A’-iI_‘S = [ATS1 0 ATSL 0]
ATg =[0 Ars_, 0 Ars_,]- (39)
Define the following sets of scaling matrices:
Xp = {XT € Rrsnoxmo : X > 0} (40)
XS = {Xs = diag (Xs],XSQ,...,XsL) :
Xs, € R<S"“+m*’)x<m"+m“>}. (41)

1483

of blocks in a periodic interconnection. The size of the
resulting LMI is only a function of the size of the basic
building block used to describe the interconnection.

« The condition/ < 0 may be conservative in capturing the
stability and performance requirements. This is intimately
tied to the fact that, the structured singular value, is gen-
erally not equal to its upper bound [33].

* In the absence of spatial dynamics (no operai@f,y,),
condition.J < 0 simply reduces to the KYP Lemma (see
[36], for example). Also note that in the absence of tem-
poral dynamics (no state), and in one spatial dimension
with only forward shift§ Ag ., = SI), the above reduces
to the discrete time version of the KYP lemma, with the ex-
ception of the missing constraiis > 0; this constraint
would impose spatial causality (see [14], for example),
which is not a requirement for the types of systems con-
sidered in this paper.

By eliminating all inputs, outputs, and temporal dynamics, one
may readily extract an LMI condition for establishing system
well-posedness.

Corollary 1: AsystemM = {A, B,C, D,m} is well-posed
if there existsXg in Xs such that

(Ads)” XsAds — (A55)" XsAgs <0 (43)
It can readily be shown that this condition is also necessary when
L = 1 (one spatial dimension).

For a given system, the condition in Theorem 1 yields a
tractable method for checking the well-posedness, stability,
and performance of a system, since it is an LMI in the decision
variablesXt and Xs. In what follows, we provide an alternate
test for well-posedness, stability, and performance based on
the condition in Theorem 1 which will be used directly for
controller synthesis in Section V. We will first require the use

The following result allows us to check the well-posednesg the following matrix transformation.
stability, and performance of a system via an LMI. The proof Definition4: Given asysterM = {4, B,C, D, m}, where

may be found in the Appendix.

1 — Agg is assumed to be invertible, léf be the following

Theorem 1: A systemM = {A, B,C, D, m} is well-posed, Matrix:

stable, and contractive if there exi¥ in Xt and Xg in Xg
such that/ < 0, where

*

1 0 0
J:=|Asr Ass Bs
0 0 I
[Anp X1+ XpArr X1ALy X1Br
X (A’-‘I_‘S)*XT —Xs 0
I Bi Xt 0 -1
A 0 0 1 0 01"
x | Agy Ass Bg |+ |Asr Ads Bd
L0 0 I Cr Cs D
I 0 X1Azg 0 1 0 0
X | (Apg)* X Xs 0 Ag'r Ags B;
I 0 0 I Cr Cs D
(42)
Remarks:

» The analysis condition is valid for both periodic and in-
finite interconnections, and is independent of the number

I, 0 0
0 -1 ,
H = (44)
0 0 o
Define functionfpsc as
fpzc(M) =M = {A7B7C7D7Iﬁ} (45)
where
m:= (m07m1 + m—1707 co,mp+ m_L,O)
(46)
Ass = —(I + Ass)([ — Ass)_lH (47)
[Ast Bs]:= V2(I — Ass) '[AsT Bs] (48)
Ars ]| Ats -1
[C’s }.——\/E[CS }(I—Ass) H (49)
Arr Br]| _ [Arr Br n Ars
Ct D - Cr D Cs
X ([ — Ass)_l[AST Bs]. (50)



1484 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 9, SEPTEMBER 2003

This transformation is a modified bilinear transformation.
The subscript “D2C” is in fact used to suggest that it is very
similar to the standard bilinear transformation used to convert
a discrete timé+{, problem to a continuous tint ., problem
[2].

Theorem 2:Given a systemM = {A,B,C,D,m} and
scaling matrices(t in Xt andXg in Xg, define.J as per (42).
The following two conditions are equivalent:

) J < 0.

I)  The following two conditions are satisfied:

1) I — Ags is invertible;

2) the following inequality is satisfied: ¥y u
A*X+XA XB C* Fig. 7. Basic building block for control design, one spatial dimension.
B*X -1 D*| <0 (51)
C D -

where X = diag(Xt,Xs) and M =
{A7B7 Cvam} = fDQC(M)-

The proof may be found in the Appendix. Note that the matrix
on the left-hand side of (51) is affine in the system d&t#, C,
andD, which is not the case fof; as we shall see in Section V,
this equivalent check for well-posedness, stability, and perfor-
mance is instrumental in obtaining convex synthesis conditions.

Note that the condition in (51) is very similar to the contin-
uous time version of the KYP Lemma. The only differences are
that X is structured and not necessarily positive definite. Fig. 8. Basic building block for controller, one spatial dimension.

V. CONTROL DESIGN PROBLEM

For control design, the basic building block is aug-
mented to include sensor and actuator variables, as de |5
picted in Fig. 7 for one spatial dimension. In particular, let
MC = {A% B% C% D% mS%} be the given open-loop plant

(AnLar9)(L,s) A  B§Y BS rY(t,s)

Z(t7 S) = C(zG ng DzGu d(tv S)

y(ta S) C)(r; DSd D)(r;u u(ta S)
(52)

where B¢, C%, and D have been partitioned as to be consis-
tent with the partition of the inputs intbandu, and the outputs
into z andy. Signalsd are the exogenous disturbanceshe
control signalsz the error signals which must be kept smallgig 9. closed-loop system, periodic interconnection, one spatial dimension.
andy the sensor signals.
K . . .
The contrql systeraV1™ to be d§5|gned will haveg as its in We may readily construct the daal, B, C, D, m} which
puts and: as its outputs. We restrict ourselves to controllers thgt ' ; G MK
. efine the closed-loop systet. Assuming that/ — D", D*)
have the same structure as the plant’s. For example, the basic . S y
o i R ' L TiS Ihvertible,y andw can be eliminated from (52) and (53) to
building block for the controller, in one spatial dimension, is de-ield
picted in Fig. 8. The resulting closed-loop system, for period}f:
interconnections in one spatial dimension, is depicted in Fig. 9.1 [(A .o 7%) (¢, s) ¢ ne rG(t,s)
In particular, the control design objective is to construct a| | (A «r¥)(t,s) | | = [AC BC] rK(t,s) (54)
systemM¥ = {AX, BX, CX, DX m*} 2(t,9) ¢ D d(t, s

[(AmKTK)(t’S)} = [AE Bi] [TK(t’S)] (53) where matricest®, B¢, C¢, andDC can readily be constructed
u(t,s) ¢t D y(t,s) from the matrices inMS and M¥; the details are omitted,
such that the closed-loop systemt is well-posed, stable, and since we will not be exploiting this dependence in the text. The
contractive. Note that in the absence of spatial dynamics (olmsed-loop system equations in (54) are not in the standard
interconnection variables), this simply reduces to the standdedm given in (23). In particulargr®, r¥) = (r$,r§, 75, rE),

‘Hoo design problem [18]. and thus the temporal and spatial variables are not grouped



D’ANDREA AND DULLERUD: DISTRIBUTED CONTROL DESIGN FOR SPATIALLY INTERCONNECTED SYSTEMS 1485

together as they are in (23). Define permutation maftias A complication with the inequality in (51) is that the

follows: controller data MX appears in the inequalitafter the
PGS 0 PK 0 plant and controller data are jointly transformed Vigoc
P = [ (r]r rg OT Pg} (55) M = fpac(fic(MS, MXK)). The following result, however,

states that the order in which the transformatfgnc and the
where interconnectionf;c are applied can be interchanged; the proof

o T K 0 follows from straight forward matrix manipulations, and is thus
Py = [ 780 } Py = {I K} (56)  omitted.
T 0 " 0 - Proposition 2: Given M andM*, assume thatl — ASg)
T o 0 and(I — Afg) are invertible, and defind1< := fpyc (M)
0 I 0 andM* := fpyc(MF). If (I - DG, D¥) and(I — DS, D¥)
M1 are invertible, then
p§ =1 0 0 0
fDZC(fIC<MG7MK>> = fIC(MG7MK)~ (60)
0 0 Lo, )
L 0 0 0 . We may thus first transformm® to yield M¢ =
-0 0 0 1 fp2c(ME), use the condition in (51) to find a suitable
I« 0 0 MK and upon finding such am¥, find an M¥ such that
0 o 0 MXE = fpac(MX). The details of constructing a suitableg
K 0 Ix - 0 from MX are deferred to Section VI.
Ps = "o : 7 In order to perform transformatiofhac, matrices7 — ASg)
: and (I — A§g) must be invertible. This is in fact a natural
0 o - 0 assumption on the plant and controller:(If — ASy) is not
| O 0 e Ik invertible, the well-posedness assumption is violated; similarly

. . for (I — ALg). This is captured by Lemma 1. As discussed
Note thatPP* = P*P = I, and that in S(ectionslfl)—A, it is reasonable to assume that the plant and
Pdiag(A ¢, Ak )P* = A, (58) controller are governed by well-posed systems of equations,
) justifying this assumption.
wherem := m® +m", i.e.;m; := m{ +m;%. The closed-loop * | emma 1: If (As.m — Ass) is invertible on,, then(7 —
system is thus\t = {A, B,C, D, m}, where Agg) is invertible.
A= PASP* B.=PBS C:=cp* D.=DC The proof may be found in the Appendix. Note that we
5g) Must also assume thaf — D\, D¥) and (I — Dg,D¥) are
(59) invertible in Proposition 2. This assumption is not restrictive,
as per (23), where = P(rG,7¥). Note that{A, B,C, D,m} however, since the problem formulation requifés- D§,D¥)
are unique and well defined as long @s— DG DK) is in- to be invertible for well-posedness, ardd can always be
vertible. It can readily be shown that when this matrix is ndterturbed by a small amount if a candidaté® results in a
invertible, the closed-loop system is not well-posed. Define tiséngular (I — DG, DX).

function fic which generates the data.v from MX and M We are now in a position to apply the tools in [24] to obtain
as follows: M =: fIC(MG; MX). We can then formalize the LMI conditions for controller synthesis. The development is vir-

problem formulation as follows. tually the same as that in [24], with two differences.

Problem Formulation: 1) Scaling matrixX is not positive definite. This will affect
Given asystem“, find a systerovt X such that 7 — D¢ DK) the coupling condition which typically arises in the LMI
is invertible, and the system defined by = fIC(MGy Ky formulation ofH., optimization.
is well-posed, stable, and contractive. 2) Scaling matrixX is structured. This is analogous to the

We will solve the control design problem by constructing gain scheduling results in [32] and [1].
MK andscaling matrices{t in Xt and Xg in Xs such that For a givenM S, let MX be a candidate controller. Define
the inequality in (51) is satisfied. Note that even though the itMS = fpac(MS) andM¥ = fpoc(MK). Assume, without
equality in (51) is affine i, 3, C, andD, and affine inX, and loss of generality, thaD§,, = 0; this is a standard approach
thus independently convex i and.X, itis not jointly convex known as loop shifting [38]. In particular, iM¥ is designed
in M and X. As we shall see, the tools in [32], [24], and [L]under this assumption it can be mapped via the transforma-
can be brought to bear on the inequality in (51) and the probleion for nonzeroD ", (see [38] for details) shown in (61) at the

convexified. bottom of the page We may thus design the controller assuming

(61)

[AK BK} [AK—BI<D$U(I+DKD$II)—1CK BX(I + DS, DK)~1
X K| T

. (I + DXDS,)=1CK (I + DXDG,)=1 DK
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that Dy, = 0, and then apply the transformation to yield the re- ¥ .—

quired controller equations.

Let M = fic(ME, MX). Let P be the permutation matrix

in (58). Then it can readily be shown that

A Bl [P 0o][A® BC][P* 0 (62)
C D| o I||C® DC||o0 I
where
A€ B€1  [Ay Bo B
|:CC ch| - _CO DO + ,D12 @[C D21] (63)
[AS 0 BS,
[ 3] e
Co:=[Cq 0] Dg:=Dg (64)
5|0 Ba _[o I
L0 Tles o
0
Di2:=[0 Dg.] Doi:=| na (65)
D§y
AKX BX
0= oK DK:| (66)

Modulo notational differences and permutation matfx
these expressions are identical to [24, eqgs. (7), (8), and (9)].
When there are no spatial operatas ,,, permutation matrix
P is equal to the identity and the expressions are equivalent to

those in [24].
We can express the inequality in (51) as

(AC)*X + XA© XB¢ (C*
(B(j)c*)’( Té (DS)*| <0 (67)
c D —T

whereX := P* X P. Recall the structure of scaling matix

X = diag(XT,Xs) Xs = diag(Xs’l,...,Xs’L)
(68)
X§:  X§t X§ o XgF
Xg,i = GK " Xrp = YGK)* xK
(X§%)" x&; (XF5)"  Xp
(69)
X§, € le xm? XS € Rmr X ,X§K e R (70)

X3 e R’;O XK ¢ R’;O xmg ,XT € R™6 X5

Xt > 0. (71)
Scaling matrixX inherits the following structure:
_ XG XGK
X = |:<XGK)* XK :| (72)
where
X6 = diag (X¢,X§4,.... X§ )
= diag (XT Xg 1....,X§L)
XK .= diag (X§", XgT. ..., X§T) - (73)

Define the following sets of scaling matrices:
XC = {XG

G
X§ € RIV™ X€ >0, X, € R X } (74)

= diag (XT Xg 1....,X§:L)7
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{X: X5 = diag (X§, X&,,..., XE,),

XK e RTO™ XK 5 0, XK, € Rgﬁm?}
(75)
XOK = {XGK : XOK = diag (XX, X§K, ..., X§K),

XK ¢ R75 s x§K ¢ g on! } (76)

We have the following Lemma.

Lemma 2: Letm§, ..., m¥ be fixed. GivenX¢ andY  in
XY, there existsnl,...,mE XK andY® in XX, and X K
andY K in X¢K such that

XG XGK ]! yG yGK
|:<XGK)* XK :| = |:(YGK)* YK :| (77)
if and only if
Xg 1
NARD )
Furthermore one may choos® = Rank(I —

Ys Xs ), mE = Rank(I — YEXS).
Proof: Due to the structure of the matrices, (78) is equiv-

alent to
x§&  xgK17! vg  ygK
g Xx) = lod W] o
and
x§, x§70 1 vs, vk 80
[<Xs,r>* Xéﬁﬂ ‘[<Ys%r<>* Y;z] ®

The equivalence of the inequality (78) angf = Rank(I —
Y5 X$) to the existence ok, X$K VK andY.S¥ such that
(79) is satisfied is proved in [34] and [24]. To complete the proof,
apply the following proposition, whose proof may be found in
the Appendix, taX§'; andYg?;.

Proposition 3: Given Ry, S; in Rg*", letk = Rank( —
R1S1). Then, there exisR», S» in R*** and R3, S3 in RE**

such that
S S1" [Ri Ry
S5 S " |RS Rs|’
]

We are now in a position to state the main result of this
section.

Theorem 3: Let M be given. Let the columns dfy- form a
basis for the null space ¢fBS,)*  (DS,)*], and the columns
of Nx form a basis for the null space n DSy). Then,
there existnX < mé, X% € X4 XK ¢ XK xR ¢ XCK
and AKX, BX GK DK such that the inequality in (67) is satis-
fied if and only if there existX“ andY ¢ in X“ such that the
three LMIs shown in (82)—(84) at the bottom of the next page
are satisfied.

Proof: A direct application of the results in [24] yields the
inequalities (82) and (83) and the coupling conditions in (77).
We may then invoke Lemma 2 to yield the required resulm

Remarks:

« Ifthe LMIs of Theorem 3 have feasible solutioA$* and

Y&, one may constructX, BX, C¥ DX by first solving

for X via Lemma 2, and then solving the inequality in

(67), which is affine in©.

(81)
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« Note thatX© andY “ are coupled only through'$ and  Then
Y in the above inequalities. This is intimately tied to the 1) X = diag(Xr, Xs), whereXt € X, Xg € Xs.
definition of stability and the physical observation that a 2)
change of independent variables— —s; does not in

any way change the problem formulation; the problem is AX{X,;F XAy XD qi ) )
spatially symmetric. This same argument cannot be ap- BiX —I  Di| <0if and only if
plied to the temporal independent variable L ~01 o ~D} jI:

» The system of LMIs can be used to construct a controller [ A3 X + XAy XBy C3
that stabilizes the system and that results in an induced B3 X -1 Dj| <o. (85)
gain less than one. The performance index, which we have | Cy D, —I |

assumed to be one, can be readily changed (ice., the
induced gain is less thay) by replacing the-1 terms in
(82) and (83) by—~I. The performance level can thus

Proof: Condition 1) follows from direct substitution,
while condition 2) follows from the following equality:

become a decision variable which can be minimized. A; X+ XAy XBy Cj

« Like the analysis LMI, the synthesis condition is valid for B3 X -1 Dj
both periodic and infinite interconnections, and is inde- s Dy -1
pendent of the number of blocks in a periodic intercon- PTP* 0 01* X+ XA, XB, Cr
nection. The size of the resulting LMI is only a function _ 0 I 0 B*X 1 D
of the size of the basic building block used to describe the 0o 0 I (%’1 D, N

interconnection. This has an obvious application to recon-

figurability: elements can be added or removed without af- prpt 00
fecting the well-posedness, stability, and performance of X 0 I 0 u
the closed-loop interconnection. 0 01
We conclude this section with the following proposition,
which states that the feasibility of the analysis, and hence VI. CONTROLLER IMPLEMENTATION

synthesis, LMIs is coordinate independent. This fact is used int,o synthesis procedure of Section V yieli§<. There are
the next section for controller implementation. two issues that need to be resolved.

Proposition 4: Let the following data be given. 1) ConstructMX such thatfpec (MX) = K.

« M§ = {AY, BY,Cf, DY ,mf }, M{ = 2) Outline a method foimplementinghe equations associ-
{Af, Bf*, CF, Dff, mf{}. ated with the control systeowv(.

. TGG = diag(Ty', ..., 1), Tf invertible, Tf7 € Aswe shall see, these two issues are intimately related.
Rs;j xmj' ConstructingM¥ essentially consists of finding the inverse

« TK = diag(T,... 7T£ﬂ')7TJK invertible, TJK € _of functlo_nszc._It is easy to see, however, that such an inverse
R-jﬁxmf is not unique, since there are many ways in whi¢hcan be

defined and be consistent with® (see Definition 4). More

S .
* X = diag(Xr, Xs), XT € Xr, X5 € Xs. intuitively, in terms of the operatorS;, we have the freedom

Define of expressing the controller equations in termsSefor S;™'.
. M§ _ A§,BS.CS, DS, m§} .— For examplt_e, consider the followi_ng two system_s o_f equations,
{(TG)=1AGTC (TG)-1B¢,CETE, DG, m&}. where the signals are only a function of one spatial independent
. ME _ {Agc.l?g".@{".bé".rﬁé{} .— variables:
(%)= AK TR, (T%)=1BK CKTK DK, mkK}. (S04)(5) = 204 (5) + 9(5)
¢ M1:{417517q171217m1}:: fIC(M?PAilf() U(S):’U 8)
* MZ = {A27B27C27D27m2} = fIC(M%;Mé() 1 +r .
« X = (PTP*)*X PTP*, where the permutation matrix (87 0-)(s) = 0.50(s) — 0.5y(s)
P is defined in Section 2, anffl = diag(7%, TX). u(s) = 0.5v_(s) — 0.5y(s). (86)
L [[ASYC +YCGA%) vE(CS) ] [BS]] ]
Ny 0 gGy@ _7 Ik Ny 0
0 7 ze zd 0 I <0 (82)
[(BS)" (D%)] -1 | :
. [[(AS)* X6 + XA XGBS] [(CS) 1T i
Nx 0 [ BS)* X6 1 05)" | | [ 01 <o (83)
0 I A/ & = zd 0 I
[CzGo Dfd] -1 .
X§ 1]
[ I Yg) > 0. (84)
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Fig. 10. Signal flow interpretation.

These two systems of equations yield the same input-output be- Solve the following LMI for X§ € X&:
havior fromy to u: for everyy € ¢», there exists a € ¢, that K \F K K 7K
satisfies both system of equations. In fact, the internal variables (Ads) X +X§Ads <0 (92)
vy andv_ are related by_ = Sv,. The advantage of the re- where without loss of generalit¥ § is invertible.
alization on the right-hand side of (86) is that it lends itself to This LMI may not have a solution; see the remarks
practical implementation, since it can be given a stable, recur- at the end of this procedure for a detailed discussion
sive signal flow interpretation. This is depicted in Fig. 10. At of when the LMI is guaranteed to have a solution.
each locatiors signalu(s) is the following quantity: Step 2) Factor eacK &, as follows:

= — .r .r . 5 * [ 0
u(s) = ~0-5(y(s) + 0.5y(s + 1) +0.25y(s + 2) XX, = (1K) { e } 7K (93)

+--+(05)%y(s+k)+---). (87) ’ mk,

wheremX+mK, = mK. DefineTE := I, TX =
diag(T;*, ..., T7), and apply the following coordi-
nate transformation ta(%:

We do not, however, need to physically connect an infinite
number of signalg to our local controller at locationin order

to generate.(s). The recursive law on the right-hand side of
(86), depicted in Fig. 10, allows us to implement this relation ;K = (4K BX CK DX mK}

via nearest neighbor coupling with coupling signal(s). o s ((T5) "L AKTR (TK)=1 5K GKTK DK mK). (94)
In general, assume that a realization
ME = (AKX BK CK DK mK} has been constructed such By Proposition 4, this change of coordinates still
that fpac(ME) = MXE. The control system is thus captured yields a suitable realization¥. Note that in this
by the following equations: coordinate system
(1) Ay Afs BET [2%(t.s) (ASs)" H™ + H¥AGs <0 (95)
K _ K K K K
<AmKEJt (i))(S) - /é?KT /é,SKS ZB)%{ v (gt’s) ' where H¥ is defined analogously tél in (44).
uLr: s T s yib s Step 3) Definemk = mfandmX = (mf, m¥ mk,,
(88) ...,m%;), where themX andmX, were defined
If (Ag mx — AK) isinvertible on/, and can be expressed as implicitly in (93). Note that if the inequality in (95)
is satisfied( A5 H™ — I is invertible; we can thus
k-1 [ 1K K 1 solve for AX, BK, CX, and DX in Definition 4 in
(Asmx — 4ss) :(Z ((Asme) " A5s) ) (Asmr) terms of A, BX, O, DX, andH* to yield
k=0
(89) Afs = (ASHS — 1) (ASHX +1) (96
the control system can be implemented by interconnecting the « IS<S : ( Ss . 1)< ( is . )7K (96)
following finite-dimensional, linear time-invariant subsystems:  [Ast BS] == —V2 (A§sH" — 1) ~ [A§y B§]
. 97
i (t.5) Ay AKs BE] [25(t9) 5 i ) B ©7)
EGedl it i G I G I ol | = ve| e | o)
u(t,s) Cr Cs D y(t,s) S S (98)
98
H H i K _ _ _ _
WIIt<h the nearest neighbor coupling lagAg 0" (¢))(s) = A, BE _ ARy BE] 4K
w™(t,s). It should be stressed that even though the controllers | K pi | ° CK DK CK
are coupled only to their nearest neighbors,dherall transfer T I"(r < K _Sl - _
of information can occur over larger distances. x H (AssH - I) [AST Bs](99)
The contr_oller Ii(mplementa;c(ion Kpro}?len;n{ thILis consists Define MX := {AK BX C¥ DK mX}; by con-
of CO”S”UC“?{gM :,K{A ,B®,C*, D*,m™} such struction, fpac(ME) = MX, Also, note that by
that fD?C(MK) T M™ and such that the operator construction,(I — ALy) is invertible, sincel —
(Asmr — Agg)”' can be expanded as per (89). The AEg = —2(A5gH® ~T)~', and thus by Proposition
following pros:edu[e will achieve this task. _ 2, Theorem 2, and Theorem 1, the control system
Step 1) GivenMX = {AK BK CK DK mK}, define the MX solves the problem formulation of Section V.
following set of scaling matrices: In addition, note that
. * _ 1
Xg' = {X§ : X§ = diag (Xg,,.... X8 1), Afs (A§g)" — I =2 (AggH® — 1) " HY

XE eRETTTE ) x ()" HN + HEAKS) HR (A%HN - 1) (100)
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which by (95) implies that(ALg) < 1. Finally, in the transfer of information, due to the nonidealities of
since(ASmK)*1 is a bounded, unitary operator and any real communication channel. A method for analyzing
systems with these nonidealities may be found in [35],

K _ -1 4K
Agmx — Ags = Agmx (I~ (Agmx) "' 45s)  (101) and a discrete time algorithm for transferring nearest

operator(Ag ,,x — Ag)~! exists, and can be ex- neighbor information is presented in [11].
pressed as in (89) (see [6, p. 169], for example), as
required_ VIl. EXAMPLES
Remarks: We applied the techniques developed in this paper to two

« The above procedure can only be performed if the welproblems. The first consists of a numerical problem in two
posedness LMI in Step 1) has a solution. This is népatial dimensions. The second consists of control design for
guaranteed, even 5y is perturbed by a small amount,a finite difference approximation of the two-dimensional heat
since the scaling matriX ¥ is structured. There are someequation; this example was chosen to suggest how the tools and
instances, however, when such a scaling maiffk is techniques in this paper could be extended to control systems
guaranteed to exist. governed by PDEs.

1) Ifthereisonly one spatial dimension, a scale exists&c
and only if A has no purely imaginary or zero™
eigenvalues, which can always be ensured by aConsider the following system equations, expressed in oper-

Numerical Example in Two Spatial Dimensions

small perturbation ofAgg. ator form for brevity:
2) If matrix A%y is block diagonal, the factorization L1 . .
problem reduces td independent LMIs, which P=3 (S1+S;'+82+8," +4)p

always have a solution as argued beforehand. The
second example in Section VIl results in a block
diagonal A&y, for example.

3) If the open-loop plant data satisfies

1
+E(Sl+sl—1—2) (S2+S5' —2)di +u

1
zlzﬁ(lers;l_z) (S2+S3'—2)p
zZ2 = U

y=p+ds.

itcan readily be shown that the resulting closed-loop g4¢h signal is a function of one temporal independent vari-

systemAss matrix is able, and two spatial independent variables= p(t, s1, s2),

ASs Bgucg etc. A realization of this system, as per (52), can readily
0 AK be constructed using the software package described in

[13]. It has two temporal states(t,s;,s2) (ASy is a

where Pg' and Pg* are the permutation matricesywo by two matrix), and each of the interconnection vari-

defined in (57). It is then easy to show that ifyples vy 1(t, s1,82), v 1(t, s1,52), 04 2(t, 51, 52), and

the closed-loop system matridgg satisfies the v o(t, s1,59) is of size two @Sy is an eight by eight matrix);

well-posedness LMI (43), then so mugfy and the details are omitted.

Ags. Since the synthesis LMIs guarantee that the Some things to note about the example are as follows.

well-posedness LMI is satisfied for the closed-loop 1) ¢ gisturbance; acts through a spatial high-pass filter.
system, it thenfollpws that the \{vell-posedness_ LM In particular, the filter completely rejects disturbances
for the controller in Step 1) will haveg solution. that are constant in space, but passes through disturbances
The physical interpretation of th€g, = 0 whose entries alternate in sign with their nearest neigh-
assumption is that nearest neighbor information 0. For example, focusing in on a three by three grid,

cannot directly affect the sensor signals, but must ;¢ high frequency disturbance would have the following
rather go through some temporal dynamics first.

C§y=0 Dg,=0 (102)

Ass = [P§ P { } [P§ PX]" (103)

i o _ profile:
Similarly, the physical interpretation of trié}?u =
0 assumption is that the actuator signals cannot :
directly affect the sensor signals. &) —f@)  f@
A dual result holds for the assumption di(t)= |- —ft) f@&) —f@t) --- (106)
BSG,u -0 D)(r;u -0 (104) f(t) _f.(t) f(t)
where the resulting closed-loop systetgs matrix
is wheref(t) is some function of time.
AG 0 . 2) The same spatial filter is used to define error variahle
Ags = [P§ P {Bg s(stG Ags} [P§ PE]". (105) We are thus interested in rejecting high spatial frequency

variations of variable.
» The nearest neighbor information transfer captured by 3) The second error variablg is the control effort.. The
(Asmv®(t))(s) = w¥(t,s) is assumed to be instan- sensor signal is simply p corrupted by noisel,. The
taneous; in practice, there will be delays and distortion control signak. acts directly on thg equation.
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4) The unforced dynamics are acting in unison. In terms of the disturbance and error vari-
able, the worst case effects occur when neighbors alternate in
L1 - - sign
== (Si+ST +S2+87 +4 107) S9N , , _
P=3 e ! 2 2 Jp (107) The resulting controller was then interconnected with the

, . , _open-loop plant, and a frequency search used to determine the
have a simple interpretation: the force on a mass particle

; ) S - L% gain. The result was 5.74.
at location(s, s2), in a direction orthogonal to the grid, Other Decentralized Control Design®ther decen-

is a function of the difference between the displacementsi;eq controllers were designed by considering various
of the particle and its nearest neighbors, in a directiQ, yjifications of the system equations. They either resulted in
orthogonal to the grid, and is repulsive in nature. an unstable closed-loop system, or in a closed-loop system with

This example is perhaps the simplest, nontrivial applications;rger,, induced gain than that obtained with decentralized
of the tools presented in this paper. In particular, note the folaniroller number 2.

lowing. 3) Centralized Control DesignCentralized controllers
1) It is in two spatial dimensions. An explicit state-spacgere designed for periodic interconnections of various size
representation of a010 grid, for example, would result (corresponding to the torus in Fig. 4) using the LMI toolbox

in a 200 by 200 state transition matrix. [25]. The largest size problem that could be solved in a rea-
2) Spatial filters are used to shape the input disturbance, agishable time was ax33 grid, which took 378 s. The resulting
define the performance objective. L5 induced gain was 4.02. The controller was a nine-state,

The price to be paid for this simplicity, however, is physhine-input, and nine-output system.
ical relevance. While one could readily ascribe a physical in- The computation time for ax22 grid was 4.14 s, and for a
terpretation to the above equations (a lumped approximationffl grid, it was 44.95 s. By assuming a polynomial growth
a membrane under compression, or electro-static forces actibhgomputation time as a function of the size of the problem
on a two-dimensional array of charged particles), it would ndf], it would take on the order of 5 years to design a central-
be a realistic one. The reader is referred to [12], [27], and [22Zed controller for a 18 10 grid (this does not take into account
for applications and more realistic examples tackled using theg@mputer memory limitations). It should be noted, however, that
tools. for periodic interconnections, the spatially invariant structure al-

1) Distributed Control Design:A distributed controller lows one to use the transform methods in [3], and the computa-
was designed using the control synthesis software déns would be significantly simpler.

scribed in [13]. The resulting controller had one temporal 4) Summary:For this particular example, the distributed
state 2X(t,s1,s2), and each of the interconnection varicontroller resulted in a closed-loop gain which was 1.37 times

ables  vX | (t,51,82),v5 (L, 51,82), 05 5(t,51,82), and smaller than that obtained with the best decentralized controller,
v¥ ,(t, 51, s2) was of size two. ’ and 1.05 times larger than that obtained with a centralized
It took 0.6 s to design the controller on a Pentium llicontroller for a three by three grid.
1.13 GHz micro-processor. The upper bound tofhenduced
gain of the closed-loop system, as provided by the controllBr
synthesis routine, was 4.58. Tlg induced gain of the system Consider the following equation which captures the time evo-
was then calculated to be 4.20 using a frequency search (nlotéon of the temperature of a bi-infinite dimensional plate:
that these figures do not have to match, since the analysis LMI 9 9
) i i . .2 ou 90U  0*U
in Section IV-D is a sufficient, but not necessary, condition). =75+ 5 +0Q (108)
2) Decentralized Control DesignVarious decentralized ot ol ol
controllers were designed by making various simplifications.wherel; andl, are the spatial independent variabless the
Decentralized Controller Number 1A fully decen- temporal independent variabl€(t,l1,l2) is the temperature
tralized controller was then extracted from the distributeof the plate, and)(¢,11,1>) is a distributed heat source. The
controller by discarding all interconnection variables. Thieoundary conditions are taken to be simplyt, —co,ly) =
resulting closed-loop system was unstable. U(t,00,l2) = Ul(t,ly,—o0) = U(t,l1,00) = 0. A central,
Decentralized Controller Number 2A fully decentral- finite difference approximation of the two spatial partial deriva-
ized controller was then designed by simplifying the systetives results in the following continuous-time, discrete-space

Finite Difference Approximation of a Heat Equation

equations as follows: approximation:
. ou
p=p—di+u E(t,sl,sz) =U(t,s1+1,82) + U(t,s1 — 1, 82)
21 = —p +U(t,s1,82+ 1)+ U(t,s1,85 — 1)
Za=1u —4U(t, s1,82) + Q(t, 51, $2) (1209)
y=p+ds.

where the continuous independent varialjeendi, have been

replaced by the discrete independent variableand s,, as-

The simplification is obtained by considering the worst Case med here to take integer values. This may be expressed as
effects of the spatial operators. In terms of the unforced dy-

namics, the most instability is obtained when all the neighbors U= (81 + S;l + S, + Sgl — 4) U+ Q. (110)
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Let d; be a heat disturbancé, sensor noisey the control,z; APPENDIX
the penalty on the temperature of the platethe penalty on the

) i Proof of Proposition 1:0ne direction of the proof is
control effort, andy the sensed information: P b

i straight-forward. Assume th@Ag ,,, — Ass) is invertible on
U= (81 + Sfl + S, + Sgl — 4) U+d;+u (111) /5. We can then immediately write down the solution to the

2 = 01U (112) system described in Definition 3 (see Section IV-B)
Z2 =1 (113) t
y=U + ds. (114) x(t) = /o exp(A(t — 7))B(d(7),n(7)) dr
A distributed controller was designed using the control syn- (119)
thesis software described in [13]. The upper bound togdhe (w(t),v(t), 2(t)) = Cx(t) + D(d(t),n(t)) (120)

gain was found to be- 1.03. The lower bound on the achievable
performance obtained via a frequency search was 1.02, or lggfere
than one percent from the upper bound of 1.03. A realization

MX was then constructed fronvi¥ as discussed in Section Arr_ [Br 0] Ars
6. The result was the realization shown in (115)—(117) at the [A B] _ | |4sT Bs 0] | | [Ass
bottom of the page. c D 0 0 0 I
The controller equations are structured enough that we may Cr D 0 Cs
readily express\¥ in input—output form X (Asm — Ass) *[AsT [Bs. I]] (121)
u=—k (% — ko (S -1|—k +g 1+ B The result then follows sincA, B, C, andD are bounded op-
P -t 1 erators, andxp(At) is bounded on the compact interyal 7.
+ 1 + 1 ) + k4> y (118) Now assume that the interconnection is well-posed, and let
Se+ks S_2+ks ©® = (Asm — Ags). For any giverp in /o, ||p|le, < 1, let

wherek; = 1.3153,ky = 2.7094,k3 = 0.4767, andky, = n(t) = épforall ¢ € [0,T]. Setd(t) = 0 forall t € [0,T].

10.1598. Sincez(0) = 0,0v(0) = dp; in addition, ||v(0)|l,, < 1. By
uniqueness, there is only or€0) that satisfies this equation.
VIIl. CONCLUDING REMARKS To summarize, for alp € 45, ||p|le, < 1, there exists a unique

The results presented in this paper have many natural exter: b2, [Irlle. <1/, such tha®r = p. By linearity of®, this

sions and applications. A method for incorporating physicalffPlies that® is invertible on,, as required. o n
motivated boundary conditions, such as Dirichlet and Neumann Proof of Theorem 1:We will prove the result in three
boundary conditions, is presented in [28]. Discrete time exteTicPS:

sions are discussed in [16], [15]. Model reduction is addressedl) Show that the system is well-posed; we will do this by
in [5]. The application of these tools to airplanes flying in  explicitly constructing Ag m — Ass) ™.

formation is presented in [23] and [22]. Relaxation of spatial 2) Once it has been shown that the system is well-posed, we
and temporal invariance is addressed in [21], [19], and [20].  will show thatexp(At) is exponentially stable.

Extensions to parameter varying systems is discussed in [43].3) Once it has been shown that the system is well-posed and
An in-depth description of how this framework can be ex- exponentially stable, we may express the system equa-
tended to encompass uncertainty may be found in [17]. Other tions as per (18) and (19), where all signals arédinwe
natural extensions, such as nonlinear interconnected systems, will then show that|z||% < (1—73)||d||%, foralld € Lo,

are also discussed in [17]. where( is some strictly positive constant.

m" = (1,1,1,1,1) (115)
-—10.1598  4.1101  4.1101  4.1101  4.1101
0.6592  —0.4767 0.0000  0.0000  0.0000
AX = | 06592  0.0000 —0.4767 0.0000  0.0000
0.6592  0.0000  0.0000 —0.4767  0.0000
L 0.6592  0.0000  0.0000  0.0000 —0.4767
r2.8700
0.0000
BYX = [0.0000 (116)
0.0000
L 0.0000

C¥ =[-0.4583 0.0000 0.0000 0.0000 0.0000]
DX = 0.0000. (117)
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Without loss of generality, assume thsg is invertible; if Xg Proposition 6: If (Agg — AAdg) is invertible on/s, then
is not invertible, it can always be perturbed to be made inve(tAs ., — Ass) is invertible on’s.
ible—by addinge!, for example— and still result id < 0. Proof of Proposition 6:Define A_ = diag(l,,,,
Well-Posedness We will show this via two propositions. =Sy 'I,_,,...,—S;'I,_,). Since As mAgl A, A~
Define A as follows: andA are bounded operators 6, the result follows from
A — d3 - 1
A := diag (S1 Iitm 1o s ST Iy gm L). (122) Asm — Ass = Ag A~ (A_ ~A_A mAss)
Proposition 5: If J < 0, then(Azs — AAZ) is invertible _
on Kg.p (4ss ss) = AgmA”_ (Ass - AAss) (131)
Proof of Proposition 5: Define m
N (A;S)*XSAJr — (Agg)*XsAgg. (123) Stability: Now that we have shown that the system is

well-posed, we can construct the state transition operator
The (2, 2) block of matrix/ is simply N + C§Cs; itthusfol- A = App + Aps(Asm — Ass) 'Ast. We have the
lows thatN < 0 if J < 0. Matrix X can be factored as following Lyapunov type of result.
Xs = T*Q*RQT, whereR = diag(l,—1),T is invertible Proposition 7: Letx € £, and letp = Az. If .J < 0, then
and commutes witlA, and@ is a permutation matrix which

reorders the columns dt. Define (p, X1)e, + (X1, p)e, < —Bll2|7, (132)
A= [ﬁl} QTA (QT) for some positive cons_t:_:mﬁ. _
12 Proof of Proposition 7:Define v = (Asm —
Pl {g] = QT Ay (QT)". (124) sﬁ?iizl;lrflezgﬁi/gnddetﬁni:teAs’mv = Agtr + Aggv. SinceJ is
The conditionN < 0 is thus equivalent to ((z,0,0), J(z,0,0))e, < =B (l=]I7, + l0llZ,) < =Bll«llZ,
Bl [B]-[A] [B]< e .

for some strictly positive constapt Defineq, andq_ in /5 as
or, equivalently

N L1 g+ = [Adp  Adsl(w,v) = (w1, v-1,w2,v_2,...,v_1)
s |4 | <1 (126) (134)
Ey || Ay _ -
q- = [AST Ass](%”) = (vi,w_1,v2,w_2,...,w_L).
Now (135)

A 0
! } (127) It can readily be verified by direct substitution that

QTA(QT) ' = QAQ ™" =: [ 0 A,

whereA; andA, are diagonal operators, whose elements cokiz, v,0), J(z,v,0))e, > (p, X12)0, + (XT2,D)0,

sist of the operatorS;; it thus follows thatA;* exists, and (g4, Xsqi)e, — (q—. Xsq_)e,. (136)
that||Ayll,, = ||A5%e, = 1. We have the following set of
equalities: Note, however, that
Agg — AAdg ¢+ = diag (S1lm,, Im 1 Solwy I oy eI ) v (137)
1z 0] _ =diag (I, , ST I, Iny s S5 Iy o, ST L, )
— QT 1<E_[ :|A>QT (128) 1291 —1 272 —2 'L -L
(QT) 0 Ay (138)
=(QT)™! [é OA } (1_ [Aol A0—1] Thus, ¢+ = Asgmg—, Whereth = (mg,m1 +
e 2 m_1,0,...,mg, + m_r,0). Also note thatAg s com-
A ;o1 —1 2 mutes withXg, and thatAg ., Asw = I. Thus
B[R] [R]er o o
2 (04+, Xsq+)e, = (4-, A i XSAS mq-)e, = (q—, Xsq- ),
Since A; and A;' are unitary operators, by the inequality (139)
. — _ < + —1 .
gl (12d6)(,j we maty expres%s&lss 169A1.455) as the following This completes the proof, -
ounded operator (see [6, p. D: The proof thatxp(At) is exponentially stable now follows
b -1 [ o A 0 i -1 directly from the Lyapunov theorem [10, Th. 5.1.3].
({41] QT) 3 ([ oA ] [ } [A } ) Performance We will next show thaf|M||., < 1. Since
2 §=0 the system is well-posed and stable, for dip £, there exist
x,v, andz in L, which satisfy (18) and (19), whengt = 0) =
X [0 ] QT (130) (. sinceJ is strictly negative

as required. [ (z,v,d), J(z,v,d))z, < —B|d||Z, (140)
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for some strictly positive constapt Letw = Ag mv. Define II=1I

g+ andg_ in £, as Assume that there exists # (x,v,d) € R®, such that
N . N (z,v,d)*J(z,v,d) > 0.1f I — Agg is invertible, defineM =
0+ = [Agr Ags Bgl(z.v.d) fp2c(M). By Proposition 8, there exist®, w, z,w,7) € R®
= (w1,v_1, w2,V _9,...,0_1) (141) suchthatthe equationsin (147) are satisfied, where it can readily
q- :=[Agy Asgs Bgl(z,v,d) be verified tha(z, 7,d) # 0. Upon substitution
= (v1,w-1,v2,w-2,...,w_p). (142) (o v, d)* T(,0,d) = p* X + 2" Xop + 2°2 — d*d
It can readily be verified by expanding the inner product in (140) +¢+ Xsq+ — ¢~ Xsq-  (150)
that

whereg, andq_ are defined in (134) and (135). Similarly, it

(%, Xox) e, + (X12,%) 20 + (g4, X84 ) o can readily be verified that

—(q—, Xsq_)e, + 12|12, < (A= B)||d||%,. (143

(4 Xsq-)e, +[12llz, < (L =PBlld]z,. (143) (6,5, d) Tz, 5,d) = p* X + 5" Xzp
As in the proof of stability, it can be shown that +2%2 — d*d + w* Xgv + 0" Xgw. (151)
(g+(t), Xsqs(t)e. = {g-(£), Xsq_(1))s, for all ¢, and
thus (g4, Xsq+)e, — (¢, Xsq—)c, = 0. We will next show From (147), note tha = 2w — v andv = Hw — /2Hv.
that(z, Xrz)c, + (XT2,2)c, = 0, which will complete the SinceH?2 = I, w = (1/v2)(w+v) ands = (1/v2)H (w—wv).
proof Note, however, that +v = ¢4 +¢_ and thatw —v = H(qy —
] ) q-), and thus
(@, X)), + (XT2, %),

= /Ooo ({(z(t), Xoz(t))e, + (X2, 2(t))e,) dt (144) @ XgD + 7" X0 = %((” +q ) Xs(qr —q)

R 1 * * *
= / %(Q:(t),XTa:(t)m dt (145) * 500+ —a-)"Xs(g+ +a-) = ¢4 Xsq4 —aZ Xsq-  (152)
o dt
= (z(00), Xrw(00))s, = (2(0), X1z (0))e, = 0 and, therefore,(z,v,d)* J(x,v,d) = (z,v,d)*J(z,v,d),
(146) whichimplies thatz, v, d)* J(x,v,d) > 0. Since(x, v, d) # 0,
] this completes the proof.
as required. ] I— IT:

Proof of Theorem 2:We first state the following proposi- ¢ (I — Ags) is not invertible, assume that there exigtst
tion; the proof follows from straightforward matrix manipula-, ¢ ge such thaty = Agsv. Note thatAgsv — » and that

tions, ano! ?s thus omitted. Asgu = v, and thus
Proposition 8: Given M = {A,B,C,D,m},

where I — Ags is assumed to be invgrtible, define(()?U’O)*J(O,v,O) > 0" ((Adg)" Xs Adg

M = {A,B,C,D,m} = fpac(M). Consider the fol- (Aze) XsAsa)u = 0. (153)

lowing set of equations: ss) ~AS4gg)V = U
D Apr Ars Br]l [z If (I — Asg) is invertible, defineM = fpoc(M), and
w| =|Ast Ass Bs v assume that there exists # (z,7,d) € R®, such that
z Cr Cs D d (z,9,d)*J(xz,9,d) > 0. By Proposition 8, there exists

. H —3H] [w (p,w,z_,w_,v) € R sych that th_e equatio_n_s in (147) and (148)
[w} [\/5 7 ] [U } (147) are satisfied, where it can readily be verified thatv, d) # 0.
As in the previous construction, it can also be readily verified
whereH is defined in (44). Then, the following hold true.  that(z,v,d)*J(z,v,d) = (z,v,d)*J(z,v,d), which implies
1) For all (z,v,d) € R, there exist{p, w, z,w,7) € R* that(z,v,d)*J(z,v,d) > 0. Since(z,v,d) # 0, this com-

such that the equations in (147) are satisfied. pletes the proof. _ u

2) For all(z,3,d) € R®, there existgp, w, z,@,v) € R® Proof of Lemma 1:We will prove the result for two
such that the equations in (147) are satisfied, afpatial dimensiongs = (s1,s2)), wheres; € Z and
furthermore ss € {l,...,Ny}; the general case is a straightforward

extension of this special case.
Assume tha(l — Agg) is not invertible. There thus exists
] . (148) real vectorp such thatp*p = 1, Aggp = p. Partitionp into
(p1,p—1,p2,p—2), Wherep, € R™ ,p_; € R™-1py €
R™2 p_, € R™-2. For a fixed integetV; > 1, define signal
'zt;ye /5 as follows:

Apr Ars Br
Ast Ass Bs
Cr Cs D

SURS TR

p
w
z

First, note that by the Schur complement formula the inequal
in (51) is equivalent to

v(s1,82) =p, forl<s; <Ny 1< s < Ny (154)
=0,

for all other s. (155)

j._[AX+XA XB
~ B*X ~I

}HC‘ BI[C Dl <0. (149)
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Letn = (Agm — Ags)v. It follows that

n(0, s2) = (p1,0,0,0), forl < sy < Ny (156)
n(1,s2) = (0,—p_1,0,0), for1<s9 < N5 (157)
n(Ny, s2) = (—p1,0,0,0), forl < sy < N5 (158)
n(N1 4+ 1,s2) = (0,p—1,0,0), forl < s < Ny (159)
=0, for all others. (160)

Note that||v||,, = v N1 N> and that|n||,, < v/2N,. SinceN;
is arbitrary, we can makp||¢, /||n|| ¢, as large as we want, which
either proves that the inverse @s ., — Ass) is unbounded,
or that there are multiple solutions o= (Ag, — Ass)v
for fixed n; either way, this demonstrates th@g m — Ass)
does not have an inverse M, as required. [ ]
Proof of Proposition 3: Let R, andS; be full-column rank
matrices inR™** that solve the following equation:
RyS; =1 — Ry 5. (161)
Note that we may expres, asRs = (I — R151)52(S552)~ .
Let the columns oF5- in R™*"~* form a basis for the null space
of S5: S3S5 = 0. We claim that the columns ¢b3-, —S;55")
form a basis for the null space of the following two matrices:

5] [om)

This follows by direct multiplication and from the following
sequence of equalities:

St
S3

I
0

I Ry

0 B (162)

—R38185 = —(858,)718581(I — R1S1)Ss

= —(S38,) 18351 RyS5S; =0. (163)

. S1 S . . S I _

Let S := Sz SJ be the unique solution t{S; 0] =
s |t Ri . Note thatS; is symmetric

S3Ry + S3RE = 0 = RoSiRy + RoSsRE =0
= (I — R1S1)Ry + RyS3R; =0
— (I — R1S1)Ry + RySiR; =0
— Ro(S3 — SHRE =0

= S3 = S;:
which implies thatS is symmetric. Similarly, letR :=
[Ri Rﬂ be the unique symmetric solution to
RS Rj
Rl 1 _ 1 Sl
ERIRE] aed
Left multiplying (164) bysS, it can readily be verified from the
equality
S1 S| |R1 I| I 5
5 sl m o] =srlo 5] oo
thatSR = I, as required. [ |
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