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The RNA world hypothesis regarding the early evolution of life relies on the
premise that some RNA sequences can catalyze RNA replication. In support of
this conjecture, we describe here an RNA molecule that catalyzes the type of
polymerization needed for RNA replication. The ribozyme uses nucleoside
triphosphates and the coding information of an RNA template to extend an RNA
primer by the successive addition of up to 14 nucleotides—more than a com-
plete turn of an RNA helix. Its polymerization activity is general in terms of the
sequence and the length of the primer and template RNAs, provided that the
39 terminus of the primer pairs with the template. Its polymerization is also
quite accurate: when primers extended by 11 nucleotides were cloned and
sequenced, 1088 of 1100 sequenced nucleotides matched the template.

The RNA world hypothesis states that early life
forms lacked protein enzymes and depended
instead on enzymes composed of RNA (1).
Much of the appeal of this hypothesis comes
from the realization that ribozymes would have
been far easier to duplicate than proteinaceous
enzymes (2–5). Whereas coded protein replica-
tion requires numerous macromolecular com-
ponents [including mRNA, transfer RNAs
(tRNAs), aminoacyl-tRNA synthetases, and the
ribosome], replication of a ribozyme requires
only a single macromolecular activity: an
RNA-dependent RNA polymerase that synthe-
sizes first a complement, and then a copy of the
ribozyme. If this RNA polymerase were itself a
ribozyme, then a simple ensemble of molecules
might be capable of self-replication and even-
tually, in the course of evolution, give rise to the
protein-nucleic acid world of contemporary bi-
ology. Finding a ribozyme that can efficiently
catalyze general RNA polymerization would
support the idea of the RNA world (1, 6, 7) and
would provide a key component for the labora-
tory synthesis of minimal life forms based on
RNA (8, 9).

Although progress has been made in find-
ing ribozymes capable of template-directed
RNA synthesis, none of these ribozymes has
the sophisticated substrate-binding properties
needed for general polymerization (7). De-
rivatives of self-splicing introns are able to

join oligonucleotides assembled on a tem-
plate (10–12). However, the templates that
can be copied are limited to those that match
the oligonucleotide substrates, and it has not
been possible to include sufficient concentra-
tions of all the oligonucleotide substrates
needed for a general copying reaction. More
recently, efforts have shifted to derivatives of
an RNA-ligase ribozyme that was isolated
from a large pool of random RNA sequences
(13–15). Some derivatives are capable of
template-directed primer extension using nu-
cleoside triphosphate (NTP) substrates, but
their reaction is also limited to a small subset
of possible template RNAs (15). These ligase
derivatives recognize the primer-template
complex by hybridizing to a particular un-
paired segment of the template (Fig. 1A). In
using a short segment of a special template to
direct primer extension, these ribozymes re-
semble telomerases more than they resemble
the enzymes that replicate RNA and DNA by
means of general polymerization.

Polymerase isolation. We have used the
catalytic core of the ligase ribozyme (14, 16)
as a starting point for the generation of a
ribozyme with general RNA polymerization
activity. The new polymerase ribozyme was
isolated from a pool of over 1015 different
RNA sequences. Sequences in the starting
pool contained a mutagenized version of the
parental ligase (Fig. 1B). To sample a broad
distribution of mutagenesis levels, the start-
ing pool comprised four subpools in which
the core residues of the ligase domain were
mutagenized at levels averaging either 0, 3,
10, or 20% (17). Two loops within the ligase
domain, both unimportant for ligase function,
were replaced with 8-nucleotide (nt) random-

sequence segments (Fig. 1B). The 59 termi-
nus of the ligase domain was covalently at-
tached to an RNA primer so that molecules
able to catalyze primer extension could be
selected by virtue of their attachment to the
primer that they extended.

In contrast to the parental ribozyme,
which hybridizes to the template, a ribozyme
capable of general polymerization must rec-
ognize the primer-template complex without
relying on sequence-specific interactions.
Therefore, the template RNA was designed to
be too short for extensive hybridization with
the ribozyme (Fig. 1B). For the parental ri-
bozyme (Fig. 1A), the pairing between the
ribozyme and the template also comprised a
stem known to be necessary for ligase func-
tion (16). To restore this stem, a short RNA,
GGCACCA (purple RNA in Fig. 1B), was
introduced to hybridize to the segment of the
ligase domain that formerly paired with the
template. Finally, because a more general
mode of primer-template recognition might
require the participation of an additional
RNA domain, a 76-nt random-sequence seg-
ment was appended to the 39 terminus of the
degenerate ligase domain (Fig. 1B).

Sequence variants able to recognize the
primer-template in this new configuration and
then extend the primer with tagged nucleotides
were enriched by repeated rounds of in vitro
selection and amplification (Table 1). RNAs
that extended their primer by using 4-thioUTP
were isolated on APM gels (urea denaturing
gels cast with a small amount of N-acryloyl-
aminophenylmercuric acetate, which impedes
migration of RNA containing 4-thioU) (18). To
favor variants that recognize generic rather than
sequence-specific features of the primer-tem-
plate, different primer-template sequences and
lengths were used in different rounds of selec-
tion (Table 1). To favor the more efficient
ribozyme variants, the stringency of the selec-
tion was increased in later rounds by requiring
addition of two tagged nucleotides, such as
biotinylated A and 4-thioU (19), and by de-
creasing the time of incubation with the tagged
NTPs (Table 1).

After eight rounds of selection and amplifi-
cation, desirable variants had increased in abun-
dance to the point that a detectable fraction of
the pool molecules could extend their primer by
using both 4-thioUTP and radiolabeled ATP in
a template-dependent fashion (Fig. 2). Other
variants able to tag themselves were detected as
early as round four, but most of these ri-
bozymes added tagged nucleotides in the ab-
sence of the template oligonucleotide, or they
decorated themselves at sites other than the 39
terminus of the primer (20). Seventy-four vari-
ants from rounds 8 through 10 were cloned and
found to represent 23 sequence families, each
family having descended from a different an-
cestral sequence of the starting pool. Ri-
bozymes from two families extended their
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primer by using both 4-thioUTP and radiola-
beled ATP in a template-dependent fashion.
These two families are represented by isolates
9.1 and 10.2 (Fig. 2). Isolate 10.2 (Fig. 1C),
from round 10, was from the more prevalent
and active of these two families and was chosen
for further study.

Polymerization with multiple turnover.
Having isolated a ribozyme that did not rely
on forming base pairs with the template RNA
during primer extension, we next determined
whether it instead recognized the particular
sequence used to link the primer to the ri-
bozyme. We were pleased to discover that the
round-10 ribozyme did not require this se-
quence. In fact, it did not require any covalent
attachment to the primer. When incubated
with a 10-fold excess of both a 6-nt primer
and a 9-nt template, as well as the appropriate

nucleoside triphosphate, the round 10 poly-
merase fully extended the primer, with mul-
tiple turnover (Fig. 3). The primer and tem-
plate sequences in this experiment were
designed to differ from those used most fre-
quently during the selection (Table 1,
aligning the sequences relative to the primer 39
termini). Despite the complete change in the
sequence of the primer-template complex, the
polymerase isolate was able to recognize the
complex and extend the primer (21). This indi-
cates that the ribozyme binds the primer-tem-
plate without relying upon recognition of a
particular sequence.

The new mode of primer-template recogni-
tion appears to be conferred by the accessory
domain derived from the 76-nt random-se-
quence segment and the 39-terminal segment
that binds the primer used for the reverse tran-

scription–polymerase chain reaction (RT-
PCR). Without the accessory domain, the ligase
domain of the round-10 ribozyme, like the pa-
rental ligase itself (Fig. 3B), displayed no ac-
tivity in polymerization assays requiring gener-
al primer-template recognition. Indeed, deleting
only 9 nt from the 39 terminus of the round-10
ribozyme severely diminished activity (20). It is
interesting that the core ligase residues emerged
unchanged in this round-10 isolate (compare
Fig. 1, B and C), and the GGCACCA oligonu-
cleotide designed to complete the ligase domain
proved to be necessary for polymerase function
(20). This suggests that the parental ligase did
not need to adapt in order to accommodate the
more general primer-template recognition af-
forded by the accessory domain.

The round-10 ribozyme was tested with nu-
merous other primer-template pairs. In all cases

Fig. 1. Secondary struc-
ture models of the ri-
bozymes. Short dashes in-
dicate base pairs. (A) A
ribozyme (black strand)
able to promote limited
RNA polymerization (15).
It extends an RNA primer
(orange strand) by using
nucleoside triphosphates
and coding information
from an appropriate RNA
template (red strand). The
ribozyme can accommo-
date any of the four RNA
nucleotides at residues in-
dicated by an X, provided
that the primer pairs with
the template. However,
the 59 portion of the tem-
plate must pair with the
ribozyme. The depicted ri-
bozyme was derived from
an RNA ligase ribozyme;
black uppercase residues
and defined residues of
the template comprise
the core of the ligase ri-
bozyme. (B) A pool of
RNA sequences based on
the ligase ribozyme (17).
Colors differentiate resi-
dues representing the li-
gase core (black, purple),
random sequence (blue),
primer (orange), template
(red), and RT-PCR primer-
binding sites (green). Res-
idues prefixed by “d” are
DNA; all others are RNA.
The 59 end of the RNA primer is covalently joined to the 59 end of each
pool molecule via a phosphodiester linkage (-59-59-) (38). The sequence
of the primer-template (X) in a given round usually differed from that of
the previous round (Table 1). (C) The round-10 ribozyme (isolate 10.2).
Residues derived from the random-sequence segments or the 39 RT-PCR
primer-binding site of the starting pool are colored blue; other drawing
conventions are as in (B). Comparative sequence analysis of improved
isolates from rounds 14 and 18 (23) supports the importance, as well as
the proposed secondary structure, of the accessory domain (residues
110 to 204), particularly within the 39 region of this domain (residues
150 to 201). Blue uppercase residues were invariant among all 22
improved isolates. Because the chance conservation of a residue not

important for activity is low (P 5 0.0074 for conservation in 22 of 22
isolates), nearly all 29 of these residues must be important for
ribozyme function. Thick blue dashes mark covarying pairs, five of
which (G151:C200, A153:U198, C154:G197, U175:A183, and C176:
G182) support the proposed pairing within the 39 region of the
accessory domain. (D) The round-18 ribozyme, a shortened derivative
of an improved isolate from round 18. Nucleotide changes from the
round-10 isolate that arose from combinatorial mutagenesis are in
pink; changes engineered when reducing the ribozyme’s size are in
gray (23). The four changes consistently found among the improved
round-14 and round-18 isolates are in uppercase pink. Other drawing
conventions are as in (C).
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it was able to recognize the primer-template
complex and to extend the primer by the
Watson-Crick match to the template. Extension
across from C or G template residues was usu-
ally more efficient and accurate than extension
across from A or U. Extension was also much
more efficient when the unpaired portion of the
template was shorter than 5 nt (Fig. 4B).

Sequence optimization of the polymer-
ase. To find improved polymerase variants,
the in vitro selection procedure was contin-
ued for another eight rounds of selection and
amplification, starting with a newly synthe-
sized pool of variants based on the round-10
isolate (22). In this pool, the accessory do-
main, as well as the two 8-nt segments at the

loops within the ligase domain, were mu-
tagenized at an average level of 20%. Be-
cause this mutagenesis included the former
RT-PCR primer-binding sequence, a new
RT-PCR primer-binding sequence was ap-
pended to each pool molecule. In half the
pool molecules, most of the ligase core resi-
dues were mutagenized at an average level of
3%, whereas in the other half, they were not
intentionally mutagenized.

The additional rounds of selection-ampli-
fication were performed with three notewor-
thy modifications to the protocol of the first
10 rounds (Table 1). First, longer template
RNAs were used to favor those variants bet-
ter able to recognize primer-template com-
plexes with long, unpaired template seg-
ments. Second, selection was based on the
ability to add two tagged U’s rather than one
tagged U and one tagged A. This change was
implemented after learning that the round-10
ribozyme uses biotinylated ATP much less
efficiently than unmodified ATP. Third, high
concentrations of unmodified ATP, CTP, and
GTP were included to disfavor those variants
prone to incorporating these competitor nu-
cleotides instead of the tagged Watson-Crick
match to the template.

Isolates from rounds 14 to 18 were screened
for the ability to fully extend a 10-nt primer
(GAAUCAAGGG) on an 18-nt template (39-
CUUAGUUCCCGCCCGGCC, underline indi-
cates segment that pairs with the primer). Most
isolates from round 18 had disrupted ligase
domains and showed no sign of polymerase
activity when assayed individually. They pre-
sumably were selected because of a parasitic
ability to deliver their primer to the active site
of a different molecule. Other isolates had poly-
merase activity and were much more active
than the round-10 parental ribozyme. Compar-
ative sequence analysis of the 22 most active
isolates (23) identified conserved residues and
structural features, which clustered in the 39-
terminal half of the accessory domain (Fig. 1C)
and are likely to be critical for its function. This
analysis also suggested a model for the second-
ary structure of the accessory domain (Fig. 1C)
and identified four residues in the domain that
consistently differed from the round-10 ri-
bozyme (23). These mutations likely conferred
increased polymerase activity.

One isolate from round 18 was particularly
adept at using long templates. To investigate
features of the ribozyme needed for activity,
derivatives of this isolate were constructed and
tested (23). A 189-nt derivative (Fig. 1D) that
retains the polymerization activity of the full-
length round-18 isolate has been most exten-
sively characterized. This derivative (hereafter
referred to as the round-18 ribozyme) has all the
features of the accessory domain that were con-
served among the 25 most active isolates, in-
cluding the four mutations thought to confer
improved activity (Fig. 1D). Additionally, it has

       

Fig. 2. Detection of ribozymes able to extend an attached primer by two nucleotides in a
template-dependent manner. (A) Schematic of the RNAs in this experiment. Ribozymes attached
to an RNA primer (orange) were incubated with 1 mM 4-thioUTP (4SUTP) and trace [a-32P]ATP
(*ATP), in the presence or absence of an RNA template (red) that codes for the addition of U and
A. (B) Activities of ribozyme pools and isolates after 8 to 10 rounds of selection. Extension reactions
were for 12 hours, under the conditions used during the rounds of selection (18). Shown is a
PhosphorImager scan of an APM denaturing gel separating RNAs extended with radiolabeled A
(RNA*A) from those extended with both 4-thioU and radiolabeled A (RNA4SU*A). The arrow points
to RNA4SU*A extended by a second 4-thioU, which did not migrate into the APM portion of the
gel. Note that addition of the second 4SU could not have been directed by an A in the template
because only one of the template coding residues is an A; some misincorporation of 4SU was
expected in this experiment because of the very large excess of 4SUTP over ATP. The sequence
families represented by 9.1 and 10.2 add both 4-thioU and radiolabeled A in a template-dependent
manner. The round-10 isolate (10.2) was chosen for further analysis and is shown in Fig. 1C.

Table 1. Parameters and substrates for in vitro selection. For each round of selection, pool RNA with
covalently attached primer (38) was incubated with the indicated template RNA and NTPs for the
indicated time (18). Nucleotide analogs 4-thioU, biotin-N6-A, and 2-aminopurine (39) are abbreviated
4SU, BA, and 2NP, respectively. The primer attached to the pool molecules was complementary to the
underlined segment of the template. Variants with polymerase activity were selected based on their
primer being extended with the tagged nucleotides indicated in the Selection criteria column (18). In late
rounds, 2 mM ATP, 2 mM CTP, and 2 mM GTP were included as competitor NTPs (Comp. NTPs). Pool
mutagenesis was either during chemical synthesis (Synthesis) or during error-prone amplification (PCR)
of the template DNA (17, 22, 40).

Round Mutagenesis Template RNA NTPs
Time
(hour)

Selection
criteria

1 Synthesis 39-GGUCAGAUU 4SUTP (2 mM) 36 4SU
2 None 39-GGUCAGAACC 4SUTP (2 mM) 20 4SU
3 None 39-GGUCAGAA 4SUTP (2 mM) 20 4SU
4 None 39-CUUAGUUCAUU 4SUTP (2 mM) 19 4SU
5 None 39-CUUAGUUCAUU 4SUTP (2 mM) 1 4SU
6 None 39-GGUCAGAUU 4SUTP, BATP (1 mM each) 14 BA, 4SU
7 None 39-CUUAGUUCAUU 4SUTP, BATP (1 mM each) 17 BA, 4SU
8 None 39-GGUCAGAUU 4SUTP, BATP (1 mM each) 17 BA, 4SU
9 None 39-GGUCAGAUU 4SUTP, BATP (1 mM each) 4 BA, 4SU

10 None 39-CUUAGUUCAUU 4SUTP (1 mM) 20 4SU
11 Synthesis 39-UCGACGGAACC 4SUTP (1 mM) 4 2 4SU
12 None 39-ACCUGAGAAGG 4SUTP (1 mM) 4 2 4SU
13 None 39-CAAGUCCAACC 4SUTP (1 mM) 0.2 2 4SU
14 None 39-UCGACGGAACC 4SUTP (1 mM) 0.2 2 4SU
15 PCR 39-UCGACGG2NP2NPCCUGCGUC 4SUTP (0.1 mM), Comp. NTPs 20 2 4SU
16 PCR 39-CAAGUCC2NP2NPUGAUCGUA 4SUTP (0.1 mM), Comp. NTPs 4 2 4SU
17 PCR 39-ACCUGAG2NP2NPGUGUAUGU 4SUTP (0.1 mM), Comp. NTPs 2 2 4SU
18 None 39-UCGACGG2NP2NPCCUGCGUC 4SUTP (0.1 mM), Comp. NTPs 0.1 2 4SU
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a U-to-C mutation within the ligase domain in
the segment designed to pair with the 7-nt RNA
that completes the ligase domain (Fig. 1D).
Reversing this point mutation diminished activ-
ity, and omitting the 7-nt RNA abolished activ-
ity altogether. We therefore speculate that, al-
though the 7-nt RNA must still pair to this
segment, a non–Watson-Crick distortion of the
helix better accommodates long template
RNAs. It is noteworthy that the four other
active round-18 isolates also had point muta-
tions within the segment designed to pair with
the 7-nt RNA (23).

Extensive and accurate RNA polymeriza-
tion. Although the round-18 ribozyme was
only marginally improved over the round-10
ribozyme when short templates were used
(Fig. 3), it was much better when longer
templates were used (Fig. 4). With templates
coding for 4, 8, 11, and 14 nucleotides, the
round-18 ribozyme extended the primer by
the corresponding number of residues (Fig.
4B). Normal RNA linkages were synthesized,
as determined by nuclease analysis of the
extension product (23). Furthermore, exten-
sion was predominantly by the Watson-Crick
match to the template. When primers that
were fully extended using the template cod-
ing for 11 nt were cloned and sequenced, 89
of 100 sequences precisely matched the tem-
plate. Of the 1100 residues sequenced, only
12 were mismatches (Fig. 4C), implying an
overall Watson-Crick error rate of 0.011 per
nucleotide. Thus, the round-18 ribozyme can
accurately use information from an RNA
template and all four nucleoside triphos-
phates to extend an RNA primer by a com-
plete turn of an RNA helix.

To examine the accuracy of polymeriza-
tion more systematically, we measured the
efficiency of matched and mismatched exten-
sion using four templates that differed only at
the first coding nucleotide. For each template,
the Watson-Crick match was added most ef-
ficiently (Table 2). The best fidelity was with
the -C- template, for which the error rates
ranged from 0.00004 to 0.0002. Fidelity was
lower for the -G- and -U- templates, primarily
because extension by the two G:U wobble
mismatches had error frequencies of 0.044
and 0.085. The overall fidelity was 0.967 per
residue. In other words, with all four NTPs
supplied at equimolar concentrations, exten-
sion by the matched nucleotide typically
would be 96.7% of the total extension.

A fidelity of 96.7% (Table 2) is somewhat
lower than the 99% fidelity inferred from se-
quencing fully extended primer molecules (Fig.
4C). Two factors contribute to the higher fidel-
ity observed in Fig. 4C. The first is the influ-
ence of sequence context on fidelity (24). The
second arises from the fact that, after a mis-
match was incorporated, further extension of
the growing chain was less efficient because the
39 terminus of the primer no longer paired with

the template (25). Thus, the full-length product
of Fig. 4C was enriched in molecules with few
misincorporated nucleotides. Mismatch incor-
poration also reduces the extension efficiency
of proteinaceous polymerases, a property par-
ticularly important for certain DNA poly-
merases because it facilitates exonucleolytic
proofreading (26).

Polymerase fidelity is most simply ex-
pressed by assuming that all four NTPs are
present at equal concentration, even though cel-
lular NTP concentrations are not equimolar
(27). For the round-18 ribozyme, certain asym-
metric NTP ratios would produce observed fi-
delities significantly greater than 0.967. For
example, lowering the GTP concentration to
one-tenth that of the other NTPs would de-
crease G misincorporation by 10-fold, while

only lowering the fidelity of extension across
from C from 0.9996 to 0.996. Because G mis-
incorporation was the major source of error, this
would increase the overall fidelity from 0.967
to 0.985 with the templates in Table 2.

A Watson-Crick fidelity of 0.985 is still
lower than the $0.996 fidelity seen with viral
polymerases that replicate RNA by using
RNA templates (28, 29), and it is much lower
than that seen for polymerases that replicate
DNA (30). Nevertheless, the Watson-Crick
fidelity of the round-18 ribozyme compares
favorably to that of other ribozymes. Previ-
ously, the best ribozyme fidelity had been
obtained with the engineered ligase deriva-
tive (Fig. 1A), which has an overall fidelity of
0.85 with equimolar NTPs and observed fi-
delities of 0.88 to 0.92 with more favorable

Fig. 3. Intermolecular primer extension using a short primer-template. (A) Schematic of the RNAs
used in these polymerization reactions. Drawing conventions are as in Fig. 2A. Note that the primer
is 32P end-labeled and that neither the primer RNA nor the template RNA is tethered or hybridized
to the ribozyme. (B) PhosphorImager scan of a denaturing gel separating primer-extension products
of the indicated ribozymes. Reactions included 1 mM ribozyme, 10 mM primer, 10.5 mM template,
and 4 mM GTP, and were incubated for the indicated time in polymerization assay conditions (33).
“Ligase core” refers to a ribozyme identical to that of Fig. 1A (black strand), except that its 39
terminus was modified to pair with the 7-nt RNA (GGCACCA) that completes the ligase core; no
extension was observed with this ribozyme. The round-10 and round-18 ribozymes are depicted in
Figs. 1C and D, respectively. After long incubation times, some of the primer was extended with
three templated residues plus one nontemplated residue. Many proteinaceous polymerases,
including Qb replicase (42) and Taq DNA polymerase (43), also tend to add an extra, nontemplated
residue.

Table 2. Watson-Crick fidelity of RNA polymerization. For each template-NTP combination, the effi-
ciency of extension by at least 1 nt was determined. For each template, the four efficiencies were
normalized to that of the matching NTP, yielding the relative efficiencies of extension. The relative
efficiency of extension for a mismatch is the same as its error rate (27) and misinsertion ratio (26).
Fidelities were calculated as the efficiency for the match, divided by the sum of the efficiencies for all four
NTPs. The average fidelity is the geometric average of the fidelities for each template (41). For each
Watson-Crick match, the absolute efficiency (per molar per minute) is also shown in parentheses. It is
reported as the observed rate constant of primer extension divided by NTP concentration, from
polymerase assays (33) using 5 mM ribozyme, 2 mM primer (CUGCCAACCG), and 2.5 mM template
(39-GACGGUUGGCXCGCUUCG, where X is the indicated template residue). In these assays, NTPs were
supplied at concentrations well below half-saturating.

Template
Relative efficiency of extension

Fidelity
ATP CTP GTP UTP

-A- 0.0034 0.0014 0.0043 1.0 (5.3) 0.991

-C- 0.0002 0.0002 1.0 (5.4) 0.00004 0.9996

-G- 0.0002 1.0 (41) 0.0006 0.044 0.957

-U- 1.0 (87) 0.0001 0.085 0.0002 0.921

Average 5 0.967
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NTP ratios (15). Moreover, the fidelity of the
round-18 ribozyme approaches that of one
proteinaceous polymerase, pol h, a eukaryot-
ic polymerase needed for accurate replication
of UV-damaged DNA (31). Yeast pol h has
an overall fidelity of 0.984, which would
increase to 0.989 with an optimal NTP ratio
(32).

General RNA-dependent RNA polymer-
ization. The round-18 ribozyme worked with
every primer-template tested. As the primer-
templates have no sequence features in com-
mon, the ribozyme does not rely on any
sequence-specific contacts. Additionally, be-
cause the primer-template complex must shift
in register relative to the polymerase active
site each time another nucleotide is added,
every polymerization experiment actually ex-
amines primer extension in a series of differ-
ing sequence contexts, demonstrating further
that the polymerization is general with re-
spect to nucleotide sequence. Granted, the

efficiency of nucleotide addition varied de-
pending on the sequence context, as evi-
denced by an uneven distribution of exten-
sion intermediates (Fig. 4), but this phenom-
enon is also observed with protein poly-
merases (26, 27).

All templates used heretofore were less than
21 nt long, leaving open the question of wheth-
er the ribozyme could accommodate longer
primer-template substrates, as would be re-
quired of an RNA replicase. To address this
question, three related substrates were tested.
The first was a short substrate, with a 10–base
pair primer-template duplex and a 10-nt tem-
plate coding region. The second substrate was
the same, except its template coding region was
lengthened from 10 to 100 nt. The ribozyme
extended this substrate by as many as 9 nt in 23
hours, although somewhat less efficiently than
it extended the short version (Fig. 5). The third
substrate was the same as the second, except
that its primer-template duplex was lengthened

from 10 to 60 base pairs. The ribozyme extend-
ed this substrate just as efficiently as the second
substrate. Thus, the ribozyme is free from steric
constraints that would preclude polymerization
using long templates or long primer-template
helices.

Given this general recognition of primer-
templates, the range for primer extension,
currently just beyond one helical turn, is lim-
ited merely by the ribozyme’s efficiency. Po-
lymerization is too slow for more extension
to be observed within 24 hours, and longer
incubations yield limiting returns, because
buffer and ionic conditions optimal for poly-
merization (33) also promote ribozyme and
template degradation. Reactions would have
to be supplemented periodically with fresh
ribozyme to achieve polymerization substan-
tially beyond one helical turn. Nonetheless, in
initiating extension of a long primer hybrid-
ized to a long template, the round-18 ri-
bozyme demonstrates polymerization that is

Fig. 4. Improved RNA polymerization. (A) Schematic of the 7-nt
primer (orange) and the templates (red) with 4 to 14 coding residues
used in these polymerization reactions. The ribozymes (not depicted)
were as in Fig. 3. (B) PhosphorImager scan of a denaturing gel
separating primer-extension products of the indicated ribozymes.
Reactions included 5 mM ribozyme, 2 mM primer, 2.5 mM template,
and 4 mM each NTP, and were incubated for the indicated time in
polymerization assay conditions (33). (C) Tabulation of nucleotides
inserted across from template residues during primer-extension by

the round-18 ribozyme. Full-length primer-extension products encod-
ed by the template with 11 coding residues were cloned, and 100
full-length clones were sequenced (23). For each template residue
(red), the number of clones that had an A, C, G, or U at the
corresponding position was tabulated. Tallies representing Watson-
Crick matches to the template are boxed. The column below the red
dash reports the identity of the nontemplated nucleotide (Fig. 3B,
legend) added to the 39 terminus of 24 of the sequenced primer-
extension products. Coding residues are numbered as in (A).

Fig. 5. RNA polymerization using long primers and long templates. (A)
Schematic of the three primer-template combinations examined (23). Each
combination included a 10- or 60-nt primer (orange) and a 20-, 110-, or
160-nt template (red). All three combinations have the same sequence near
the site of polymerization (residues defined). (B) PhosphorImager scan of

denaturing gels separating primer-extension products. Reactions included 5
mM round-18 ribozyme, 0.5 mM primer, 1 mM template, and 4 mM each
NTP, and were incubated for the indicated time in polymerization assay
conditions (33).
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general not only with respect to the nucleo-
tide sequence but also to the length of the
primer-template complex.

General template-directed RNA polymer-
ization requires recognition of the generic fea-
tures of a primer-template complex in addition
to ever-changing NTP specificity, as dictated
by the next template residue. It is a complex
reaction—one of the more sophisticated reac-
tions catalyzed by single polypeptides. The
demonstration that such an activity can be gen-
erated de novo, without reference to any bio-
logical ribozyme or structure, is a testament
both to the catalytic abilities of RNA, as well as
to modern combinatorial and engineering meth-
odology. Key to this success may have been the
stepwise procedure of first, isolating from ran-
dom sequences an appropriate catalytic core in
the context of a simple reaction (13, 14); sec-
ond, optimizing the sequence of the catalytic
core (16); third, determining the limits of the
core activity (15, 34, 35); and fourth, flanking
the core with additional random sequence and
selecting for more sophisticated substrate bind-
ing. Thus far, efforts to select for polymeriza-
tion activity in a single step directly from ran-
dom-sequence RNA have yielded only ri-
bozymes that decorate themselves inappropri-
ately with tagged nucleotides (36).

How could general polymerase activity
have arisen on early Earth? If emergence of the
first RNA replicase ribozyme coincided with
the origin of life, it would have had to arise in
a single step from prebiotically synthesized
RNA, without the benefit of Darwinian evolu-
tion. Our shortest construct retaining activity
was 165 nt, with about 90 nt involved in im-
portant Watson-Crick pairing and at least an-
other 30 critical nucleotides (23). Ribozymes
with the efficiency, accuracy, and other at-
tributes of an RNA replicase might have to be
even larger than this. However, current under-
standing of prebiotic chemistry argues against
the emergence of meaningful amounts of RNA
molecules even a tenth this length (1). This
difficulty is anticipated by those who propose
that life, and Darwinian evolution, began before
RNA. Some speculate that in this “pre-RNA
world,” life was based on an RNA-like poly-
mer, yet to be identified, that possessed the
catalytic and templating features of RNA but
also a more plausible prebiotic synthesis (1).
The pre-RNA life forms presumably later de-
veloped the ability to synthesize RNA, facili-
tating the emergence of an RNA replicase ri-
bozyme, which in turn enabled the transition to
the RNA world.

It will be interesting to examine the extent to
which continued mutation and selection can
improve the activity of the polymerase ri-
bozyme. Perhaps ribozymes with accuracy and
efficiency sufficient for self-replication can be
generated. The requisite fidelity may be close at
hand, possibly only requiring a reduction of the
overall error rate to one-third its current value,

thereby increasing fidelity observed with un-
equal NTP concentrations from 0.985 to 0.995
(37). The increase in polymerization efficiency
would need to be more substantial (at least
100-fold), although not beyond the degree of
optimization achieved previously with in vitro
evolution experiments. Other important issues
will need to be addressed, including strand dis-
sociation after polymerization. Nevertheless,
the general polymerization activity of the
round-18 ribozyme offers support for the idea
of autocatalytic RNA replication in the distant
past, as well as a new starting point for its
demonstration in the not-so-distant future.
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