
State Reconstruction for Determining Predictability

in Driven Nonlinear Acoustical Systems

Diploma Thesis

MEDIA LABORATORY

Massachusetts Institute of Technology

Professor Neil Gershenfeld

Institut f�ur Elektrische Nachrichtentechnik

Rheinisch-Westph�alische Technische Hochschule Aachen

Univ. Professor Dr.-Ing. H.D. L�uke

by

Bernd Schoner

May 1996

State Reconstruction for Determining Predictability

in Driven Nonlinear Acoustical Systems

by

Bernd Schoner

Diploma Thesis

MEDIA LABORATORY

Massachusetts Institute of Technology

Professor Neil Gershenfeld

Institut f�ur Elektrische Nachrichtentechnik

Rheinisch-Westph�alische Technische Hochschule Aachen

Univ. Professor Dr.-Ing. H.D. L�uke

March 1996

Abstract

This thesis addresses the problem of predicting the output time series of a driven nonlinear

system given access to its input. Based on phenomenological observance of the physical

system the internal state vector is reconstructed using time-lagged versions of the input and

the output signals. The time-lagged vector represents the e�ective degrees of freedom of

the system and is related to the unknown physical state vector by a di�eomorphic mapping.

The reconstructed state space is used for predicting output signals given future input to

the simulated system.

Although the results of this thesis can be generalized to any nonlinear system {particularly

nonlinear oscillating systems{ we focus on the musical application of predicting (synthesiz-

ing) the audio signal of a violin, given the sensed bowing input of a violin player. With the

ultimate goal of on-line synthesis in mind, special prediction experts are de�ned, such as

a steady state predictor and a predictor of the energy level. For any one speci�c task the

guiding issues are: the minimum space dimension that allows reliable prediction, the most

appropriate approximation technique for a speci�c space, and the most e�cient parameter

search given a model framework. Through experimental results from real-world violin audio

and sensor data further measures in terms of model architecture and search algorithms are

derived that eventually would enable the creation of an overall prediction system.

This thesis describes the theory of state-space reconstruction for nonlinear systems, the

extension to input-output systems and its applicability for musical synthesis. It presents

a new formalism to describe probabilistic cluster-based function approximation and fore-

casting as well as the speci�c training algorithms. Moreover it proposes hierarchical model

architectures in time and space for e�cient allocation of computational resources and de�nes

a model and training framework for the speci�c musical multi-scale application.

2

Acknowledgments

I thank my two advisers: Professor Neil Gershenfeld, for inviting me to the Media Lab,

sharing his great ideas with me and for keeping me going with his never ending enthusiasm;

Professor L�uke, for generously supervising my thesis for my home university at Aachen. I

am grateful to Joe Paradiso for designing and tuning the violin bow, to Julia Ogrydziak for

playing the violin and for her programming help, to Josh Smith for programming the HC11

and for many other tips, to Eric Metois for interesting discussions, to Vadim Gerasimov for

his help with tricky Windows problems and to the entire Physics and Media Group.

Also I thank my family, my friends and all the people who helped and supported me

during the last six years.

This work was supported by the TTT-consortium and by a grant from the Otto-Junker-

Foundation Aachen.

3

4

Contents

1 Introduction 7

2 Embedding and Musical Synthesis 10

2.1 The Overall Concept : 10

2.2 Time-Series-Prediction : 12

2.2.1 Linear Systems : 12

2.3 State-Space-Reconstruction of Non-Linear Systems : : : : : : : : : : : : : : 14

2.4 Input/Output Embedding : 16

2.5 Characterization of Dynamic Systems : 18

2.6 Preliminary Conclusions : 20

3 Function Approximation in the State-Space 23

3.1 Bayesian Priors and Regularization : 23

3.2 A Polynomial Approach : 26

3.3 Probabilistic Forecasting with Cluster Weighted Local Models : : : : : : : : 28

3.3.1 Density Approximation of the State Space : : : : : : : : : : : : : : : 29

3.3.2 The prediction step : 32

3.3.3 Learning and Search : 36

3.4 Clustering Data by Melting : 36

3.5 The EM Algorithm : 40

3.6 Empirical Tests : 47

4 Working with the Violin 52

4.1 The Input Space : 52

4.2 Prediction in the Steady State : 54

4.3 Polynomial Point Prediction : 55

4.4 Prediction of the Envelope : 56

4.5 Results, Problems and Potential Solutions : : : : : : : : : : : : : : : : : : : 57

4.5.1 Multi-Scale Space Splitting : 58

4.5.2 Hierarchical Cluster Structures : 59

4.5.3 On-line Learning : 61

5 Toward a Final Model 69

5.1 The Architecture : 69

5

5.2 Learning : 71

6 Conclusion 74

A Violin and Bow Hardware 77

Nomenclature 83

Bibliography 83

6

Chapter 1

Introduction

1.1 Die Welt ist die Gesamtheit der Tatsachen, nicht

der Dinge.

1.12 Denn, die Gesamtheit der Tatsachen bestimmt,

was der Fall ist und auch, was alles nicht der Fall

ist.

L. Wittgenstein, TRACTATUS1

The two resonance holes of the violin remind one of a question mark. Asked why they

have that shape, a violin maker once responded: \This is an expression of the fact that the

violin stands for one big question mark."[Buc73, P.9].

This anecdote contains a lot of truth, both from a violin makers point of view and

that of a scientist. Violin makers tried to understand the `secrets' of masterpieces made by

Stradivarius or Guaneri del Gesu for centuries, in order to build instruments of equal sound

and beauty. None of the copies they made reached the quality and the aura of the original.

More recently scientists started to analyze string instruments in order to understand the

governing physical equations. Yet, they could never hope to describe the violin as a complex

system with its many degrees of freedom. So the intuitive approach of the violin maker, as

well as the analytical approach of the physicist, failed to explain the functionality of string

instruments in general, and of masterpieces of the art of violin-making in particular.

Given these di�culties, it isn't surprising that most attempts to synthesize violin sound

arti�cially haven't been very successful. While electronic pianos have come close to the

acoustical original, the synthesis of string instruments still has a long way to go.

We believe that there are two major reasons for the failure of electronic and digital violin

synthesis:

i) Conventional synthesis methods use linear models to represent the audio signals in

time and frequency domains or to simulate the physical behavior of the instrument.

However, these linear models are unsuitable for dealing with the highly non-linear

behavior of string instruments.

1An English translation of the Wittgenstein quotes is given in chapter 6.

7

ii) Most conventional synthesis techniques use interfaces di�erent from the original musi-

cal device to deliver input to the sound engine. These arti�cial devices are not suitable

replacements for the original. A keyboard does not permit the same subtle control as

a violin bow does. The physical input of a musical instrument is intrinsically linked to

its physical output, so that any change in the input control space necessarily results

in a di�erent sound.

Given these assumptions we propose a new concept of musical synthesis, based on time

series analysis, state space reconstruction and machine-learning techniques. We consider

the violin as a physical system, driven by a set of control inputs that produces an audio

output. The system can be seen as a black box that hides its internal physical states, but

lets us access the input time series (e.g. bow position, bow pressure, �nger position) and the

output time series (audio signal). First, the relevant input data and the audio signal of a

played violin are recorded simultaneously. Then a non-linear functional match between the

input time series and the audio output is inferred. This function is exclusively reconstructed

from the collected data. It phenomenologically describes the global physical behavior of the

violin in a reconstructed state space, without consideration of interior physical mechanisms.

Once the phenomenological training is done, the computer has literally learned to sound

like a violin when given the appropriate control inputs.

Although the main motivation of this work is the musical application, the approximation

and modeling techniques which have been developed are general. They are applicable to any

physical system with a de�ned input and output. In fact, state-space-reconstruction as the

principal foundation of our prediction technique is meaningful for any imaginable physical

object. Moreover, non-physical real world systems can be represented by the machine

learning techniques we are going to present, provided they share some very general features

such as predominant non-linear behavior.

Within the imaginable physical non-linear systems, the violin represents an ambiguous

case, as it seems at the same time both di�cult and easy to be modeled. It is di�cult

to convince human perception that the synthesis model behaves as well as the original

instrument. Any 'sloppiness' in modeling will certainly be detected by a musically trained

and conditioned audience. For similar reasons, we might �nd it easier to model a violin

than to model abstract physical phenomena. Our clearly de�ned goal is to synthesize

high quality sound. In addition to abstract error measures, the perceptional error measure

should be most helpful. So the violin seems to be an ideal test application for state-space-

reconstruction, for model architectures and for parameter search techniques.

The �rst part of this paper deals with the theoretical framework of embedding synthe-

sis and state space reconstruction. The embedding theorem is reviewed and its particular

applicability for musical synthesis is pointed out. We then describe and justify the func-

tion approximation and pattern recognition techniques that were used for predictor mod-

els. Particular attention is paid to clustering algorithms, such as melting algorithms and

the Expectation-Maximization algorithm. These techniques are developed towards clus-

ter weighted modeling in the sense of simple local experts, e.g. local linear models, being

softly weighted by clusters in the input space. We also point out the analogies between

8

the clustering algorithms and thermodynamic terminology. The e�ciency of the proposed

algorithms is then tested with some simple data sets.

In the second part of this thesis the function approximation techniques are applied to

actual violin data. We analyze the data with regard to various prediction goals, build the

speci�c model and test it in prediction and synthesis. We also discuss further improvements

in model architecture and in computational e�ciency which represent important steps to-

wards the �nal model. In particular, hierarchical mixture architectures are considered that

partition the prediction space in time and in the input domain.

Finally, a model is proposed that integrates the theoretical and experimental results

described in this paper. The proposed predictor is subject to change until it is used for a

stage performance, but it re
ects insight and ideas which could be the basic structure of a

model that one day will deserve the name `Digital Stradivarius'. Although the �nal model

is proposed in terms of musical synthesis, it can be interpreted as a general framework for

the prediction of non-linear multi-time-scale systems.

9

Chapter 2

Embedding and Musical Synthesis

2.01231 Um einen Gegenstand zu kennen, mu� ich zwar

nicht seine externen-aber ich mu� alle seine inter-

nen Eigenschaften kennen.

L. Wittgenstein, TRACTATUS

2.1 The Overall Concept

We are trying to built a model which matches the output of a physical system to its physical

input. For the violin application, this functional match relates input time series such as

bow velocity and bow pressure to the audio signal of the violin.1

The approximation of the input-output function is completely phenomenological and

data-driven. Deciding on the relevant input series for our model requires some insight

into the local physical behavior, such as the bow-string interaction, Helmholtz modes and

acoustic properties. However, once the relevant input series are known, the details of

this physical behavior are no longer a direct concern and we can proceed to build the

phenomenological model, based on collected data. Unlike the case of a �nite element model,

insight into the governing equations of violin strings and corpus is helpful, but not necessary.

One might think that analysis in the frequency domain should be an important part of

this paper. Indeed, many synthesis approaches are based on time/frequency representations

of musical sound. We will point out below why the conscious renunciation of Fourier spectra

is considered to be the strength of our approach.

As opposed to conventional techniques this synthesis approach is based on the recon-

struction of the instrument's state-space. The concept of state-space-reconstruction has

become quite popular as a result of the recent
urry of activity in the �eld of non-linear

dynamic systems, particularly chaotic systems. The notion of state-space derives from

the Hamiltonian representation of dynamic systems. The system is represented in a n-

1Once again we point out that the results from this paper apply to physical systems in general. Whenever

phenomena or results are described in terms of the particular device violin, it is done for clarity, and not

meant to be restrictive to this case.

10

dimensional space where the axes are labeled with the Hamiltonian coordinates of position

and impulse [MS94, P.16].

The violin spans a high dimensional mechanical state-space. Yet, we do not have access

to the state variables, nor could we hope to represent the many mechanical degrees of

freedom of the violin. However, it is possible to reconstruct a space that is topologically

equivalent to the real state space. Known as a time lag space, this space represents the

e�ective degrees of freedom of the system.

Given that the audio signal of the violin is known, the state-space is reconstructed from

this one observable and its time-lagged versions. Given the time series s(t) the n-dimensional

time-lag space of the system consists of n axes, representing s(t); s(t��); s(t�2�); :::; s(t�

(n�1)�).

Since we are dealing with a driven system, information about the physical input must be

included in the model. Therefore, the number of space dimensions is further increased by the

input dimensions. Possible input time series are: the sensored bow position, bow pressure

and �nger position. Denoting the input space by the time series i1(t); i2(t); :::; im(t), the

complete space is de�ned by the axis

s(t); s(t� �s); s(t� 2�s); :::; s(t� (ns � 1)�s); i1(t � �i); i1(t � 2�i); :::;

i1(t� (ni � 1)�i); :::; im(t � �i); im(t� 2�i); :::; im(t� (ni � 1)�i)

where �s, �i denote the time delay between two samples of the audio signal and the input

time series and ns, ni denote the total number of lagged series of the audio signal and the

input series. The total space dimension is therefore D=ns+m�ni.

If D is su�ciently large2, s(t) can be described by a singular valued function of the other

space dimensions. Our goal is then to approximate the hyper plane

s(t) = f(s(t� �s); s(t� 2�s); :::; s(t� (ns � 1)�s); i1(t� �i); i1(t � 2�i); (2.1)

:::; i1(t � (ni � 1)�i); :::; im(t� �i); im(t � 2�i); :::; im(t� (ni � 1)�i):

Once f is found the relation between s(t), delayed versions of s(t) and the input vector

is used in an iterated prediction process that now becomes discrete. Any audio sample s(n)

is predicted by f in which t is replaced by n�T and � becomes an integer number of samples.

The predicted s(n) serves as new input for future prediction.

In the continuum of methods employed in musical synthesis, our approach can thus be

characterized as lying between physical modeling and pure signal processing and sampling.

Although the mechanics of the violin are not described, its physical behavior is represented

in state space. This image is exclusively built on the analysis of collected data, yet, it does

not imitate the signal itself but rather the physics behind it.

In order to built a �nite element model of the violin, roughly 109
oating point operations

per second are needed3. However, this amount of computational e�ort is still insu�cient to

2The exact conditions will be discussed in section 2.4
3This approximation assumes a certain spatial model resolution of the violin corpus, which seems to be

11

produce �nite element violin models which could reproduce humanly perceptible di�erences

for di�erent violins. In our case, we hope to use less computational resources, while at the

same time preserving the distinguishability between di�erent instruments.

2.2 Time-Series-Prediction

There have been many attempts to predict the future behavior of a time series, given some

sample values of its past. In almost all disciplines people try to extract information from a

system's observable, so that this one observable becomes predictable, and that the system

can be classi�ed with regard to typical invariants of dynamic systems such as degree of

non-linearity, internal degrees of freedom or noise level. The range of examples for time

series prediction reaches from physical systems such as laser
uctuations [WG93, P.4], over

biological phenomena such as epidemic cycles [DES94] to sociological or economic issues such

as stock prices. The analysis of the capital markets has perhaps become the paradigmatic

application of time series analysis [WMS95, WZ96].

Time series analysis of acoustical systems is also not new. Yet, analysis in the time-

domain has rarely been used for predicting musical sound { that is, for synthesis of musical

signals at a subtle level. In the context of synthesis, frequency-domain approaches have

played the predominant role. Only few attempts have been made in recent years to extract

information from acoustical time series with non-linear techniques [LP88, Gib88, PCG91,

MS94]. None of the work cited used the extracted information for re-synthesis.

Our attention is focused on the acoustical application. Yet, we remind the reader once

more that all results of this paper are applicable to non-linear systems in general. In

fact, the embedding theorem, which will be introduced in the next section, originally was

formulated by Floris Takens [Tak81] in the completely di�erent context of
uid dynamics.

The common feature of Takens description of turbulence and our re-synthesis of the violin

is, the non-linear behavior of the two systems.

The history of time series analysis can be seen as a development from linear approxi-

mation methods towards more and more non-linear techniques. In order to understand our

own approach to time series prediction, we propose a short
ash-back to the linear roots of

time series theory and to linear systems theory.

2.2.1 Linear Systems

Any dynamical time-variant system, whether linear or not, can be written in the form

_~x = f(t; ~x; ~u) (2.2)

y = �(t; ~x; ~u)

adequate to represent the basic mechanical behavior of the body. The number of nodes (' 105)is then
multiplied by the number of operations per node (' 10)and the audio sampling rate (' 103).

12

where ~x is the systems state vector, ~u describes the driving forces of the system and y

describes any of the systems output observable4. For linear systems, the functions f and

� can be described by matrices and the system of di�erential equations adopts the simple

form

_x(t) = F(t) � x(t) +G(t) � u(t) (2.3)

y(t) = H(t) � x(t) +D(t) � u(t)

where F, G, H and D are time-variant square matrices. The system is represented as

a system of �rst-order di�erential equations, as all higher order di�erential equations can

be transformed into a �rst-order system. For time-discrete systems, such as any digital

representation, the equivalent equations5 are

x(k+1) = A(k) � x(k) +B(k) � u(k) (2.4)

y(k) = C(k) � x(k) +D(k) � u(t)

whereA,B, C, andD are again time-variant matrices. We refer to the time-discrete system

whenever possible, as it is closer to our �nal digital implementation of a physical system.

Given system 2.4, many important features and invariants are de�ned by the systems

matrices, such as stability, observability and controllability. Linear systems can easily be

characterized as well as designed, by analytically `playing' with the system matrices.

From a more time-series-oriented perspective, equation 2.4 can also be written as an

Autoregressive Moving Average Model (ARMA)6 of the following form:

x(k) = a(k) +
MX
m=1

b(m)x(k�m) +
NX
n=1

c(n)u(k� n); (2:6)

where we assumed a scalar input u(k)7. Since the map 2.6 is time-discrete and linear, it

can be most compactly written as a z-transform, which transforms the convolution in the

time domain in a simple product:

X(z) = A(z) +B(z)X(z) + C(z)U(z) (2.7)

=
A(z)

1� B(z)
+

C(z)

1� B(z)
U(z)

where A(z), B(z), C(z) and B(z) are polynomials in z, and X(z) and U(z) denote the

z-transform of state and input vector. Y (z) is usually identical with one of the systems

states or can be described as a linear combination of all of them. The coe�cient vectors

can be obtained from the correlation functions as described in [Ger97, P.184].

4in the following vectors will be denoted x or ~x.
5see [Mey93, II P.162] for the transformation from time-continuous to time-discrete state vectors.
6The AR part describes the part of the output that is a linear regression of its previous values, the MA

part describes the part that is de�ned as a moving average of the input series.
7a multidimensional input vector u(k) simply causes multiple sums over the ui(k � n) in 2.6.

13

Thus, three formalisms have been presented to describe a linear system. They all contain

the same information and they can be transfered into one another. Each of the representa-

tions is useful for di�erent tasks such as the designing or characterization of �lters. They

work well for linear deterministic systems and for fully stochastic systems. However linear

description techniques break down in the region between these two unlikely limits [Ger97],

and unfortunately all three descriptions break down under the same conditions [Met96].

In fact, none of the above description techniques is any useful for non-linear systems.

Although the concept of state-space is still meaningful, there is no compact description in

the form of matrices that relates these states. Neither is any linear transform such as the

Fourier-transform for time-continuous systems or the z-transform for time-discrete systems

applicable.

Musical instruments 'look' very linear. Most of them have a clear harmonic spectrum,

which certainly contains useful information about speci�cs of an instruments. However, the

time-frequency representations of musical signals tell only half the truth. The important

musical and instrumental characteristics are de�ned by global non-stationary and non-linear

phenomena such as the attack noise or waveform shaping produced by a change in bowing.

These phenomena can never be described adequately by linear methods as de�ned above.

Once the decision for a nonlinear model is taken, we are left with a small set of clas-

si�cation instruments, which are outlined in section 2.5. First, the notion of state-space-

reconstruction has to be introduced, since nonlinear characterization is done almost exclu-

sively based on this concept.

2.3 State-Space-Reconstruction of Non-Linear Systems

So far we have seen that it is fairly easy to describe and control linear systems. We suspect

that it is di�cult { if not impossible { to describe non-linear systems. In order to improve

our understanding we have chosen a representative system known to behave non-linearly,

the Lorentz-Attractor { one of the most striking examples for non-linear, chaotic behavior.

Edward Lorenz tried to approximate Navier-Stokes equations for a convectional system

[Ger88, P.8] and found the following set of �rst-order di�erential equations:

_x = �(y � x) (2.8)

_y = �x� y � xz

_z = ��z + xy

Figure 2-1(a) shows 5000 sample points of the x variable of the Lorenz set in the time

domain for the parameter set � = 10, � = 8=3 and � = 28 8 and �gure 2-1(b) shows the

Fourier-transform of the same time series. Although the time-domain representation seems

to have some sort of periodic behavior, the frequency-domain plot gives no insight at all into

8The time continuous di�erential equations were approximated by a fourth-order Runge-Kutta approxi-

mation (h=0.01), see [Ger97, P.68].

14

0 1000 2000 3000 4000
−20

−10

0

10

20

x(nT)

nT 100 101 102 103
100

105

1010

n/T

X(n/T)

Figure 2-1: x-coordinate of the Lorenz set in (a) time and (b) frequency domain.

−20

−15

−10

−5

0

5

10

15

20

−30−20−100102030

x(t)

y(t) −20−1001020
−20

−15

−10

−5

0

5

10

15

20

x(t)

x(t+tau)

Figure 2-2: Lorenz Attractor in (a) the x-y-z state space projected in 2D. (b) 3D time-lag

space of x(t) projected in 2D (� = 10 samples).

the nature of the system. We tend to assume random behavior rather than deterministic

equations.

Yet, if we look at the state space representation of �gure 2-2(a), suddenly a very regular

behavior occurs. We discover a chaotic attractor, that keeps 'drawing the same picture'

in state space, no matter which initial conditions we choose for our di�erential equations.

However, how should such state variables be found for an unknown system of arbitrary form

and dimension? This is when the embedding theorem comes in.

In 1981 Floris Takens discovered, that there is a di�eomorphic mapping between the

manifold of states in the state space X 2 R
d1 of an arbitrary system and a second manifold

Y 2 R
d2 that can be reconstructed from one observable of the system. Given the output

measurement y(t) of a system, Y is reconstructed by assigning time delayed versions of y(t)

to the axis of Y , such that the axis are labeled y(t); y(t� �); y(t� 2�); :::; y(t� (d2 � 1)�)

15

where � describes a time constant that will be discussed later. The new manifold in Y is

now supposed to be topologically invariant to the original one in X . In �gure 2-2(b) the

Lorenz-Attractor is reconstructed in the described manner. The similarity to �gure 2-2(a)

is obvious. Not only is the overall topological shape preserved, but also local details of the

orbit are easily identi�ed in the two plots. We will sketch a proof of the embedding theorem

in the next section, once its �nal form is known. Here we state phenomenologically the

most important results:

1. The manifold formed by a dynamic system's Hamiltonian states is topologically iden-

tical to a second manifold formed by one single observable of the system and its d2�1

time lags. The two vector manifolds di�er by no more than a smooth and invertible

local change of coordinates. They therefore de�ne a local di�eomorphism.

2. The above is true only, if the dimension of the lag space d2, referred to as the em-

bedding dimension is large enough. In general, the embedding dimension should be

chosen as 2�d+1, where d is the number of degrees of freedom of the system. However,

this choice may be 'too good', meaning that a smaller d2 works as well. The choice

of d2 = 2 �d+1 assures that there is no better way of preventing our solution from

lying on a bad (ambiguous) subset in the embedding space. Yet, we are interested in

the number of e�ective degrees of freedom, which, due to dissipation, can be much

smaller than the number of mechanical degrees of freedom.

3. The embedding theorem is true generically, meaning that there are only very few

unlikely cases for which it does not apply. In those pathological cases, however, only

a small change of variables is needed to make the theorem work again.

4. Due to the robustness of the theorem, the choice of � does not matter in principle.

Some choices of � make the manifold 'easier to read', but no choice would change the

manifold's topology. However, a small � lets the manifold degenerate into the space

diagonal. A lag which is too big relates points of the time series which do not correlate

dynamically.

2.4 Input/Output Embedding

So far we dealt only with autonomous systems and their embedding in time-lag-space. These

systems keep producing output, based on a set of initial conditions and internal governing

equations. They can be formally described as @x

@t
= f(x;x0). However, most systems

depend on a time variant input as well. If the systems governing equations are unknown,

we obtain a relationship as shown in �gure 2-3.

Obviously, musical instruments belong to the class of input/output systems. The driv-

ing input re
ects the intentions of the player. Therefore, we need to include the information

from the driving forces in the embedding framework and we hope to end up with a descrip-

tion of the system, that relates the output uniquely to the input.

16

Given are the time dependent scalar input u(t) and the output signal y(t) of a system.

In extension to the embedding theorem for autonomous systems M. Casdagli [Cas92, P.266]

and others [Hun92] proposed the following solution for driven systems:

y(t) = f(y(t��); y(t�2�); :::; y(t�(d�1)�); u(t); u(t��); u(t�2�); :::; u(t�(d�1)�) (2:9)

Casdagli shows that there is a di�eomorphic mapping between the reconstructed manifold

de�ned by 2.9 and the state space of the driven system. Given a d-dimensional state vector,

Casdagli claims that 2d+1 dimensional time-lag-vectors for both, the input time series u(t)

and the output time series y(t) guarantee the function f() to be unique. The remarks

concerning embedding in section 2 still apply. Yet, our model has become much more

general and seems to cover the whole world of possible physical behavior.

The time-discrete version of 2.9 can be written as

y(n) = f(y(n�k); y(n�2k); :::; y(n� (m+1)k); (2.10)

u(n); u(n�k); u(n�2k); :::; u(n� (l+1)k)

We sketch a proof for the time-discrete case as done in [Cas92]: Let's assume a �nite dimen-

sional unknown system determined by its d-dimensional state vector sn and the following

set of equations:

~s(n+1) = f(~s(n); ~u(n)) (2.11)

y(n+1) = h(~s(n+1))

If equation 2.11 is true the delay vector

~vn = yn; yn�k ; yn�2k ; :::; yn�(m�1)k; un; un�k ; un�2k; :::; un�(l�1)k

is needed to describe uniquely and smoothly the unknown state s(n). Therefore there has

to be a function P : Rm+l
) R for all yn such that

y(n+1) = P (v(n)) (2:12)

~x(t) - Unknown system - ~y(t)

Figure 2-3:

17

We assume m = l and de�ne the smooth map � : Rd
�R

m�1
) R

m by

�(~s; un�1; :::; un�(l�1)k) = :::; h(f(f(~s; u
n�(l�2)k; un�(l�1)k))); (2.13)

h(f(~s; un�(l�1)k)); h(~s)

= yn; yn�k :::yn�(m�1)k

For equation 2.13 to have a unique solution ~s, m must be chosen such that m > d. For

m = d there would be d simultaneous non-linear equations for d unknown components of ~s,

which normally have more than one solution. If m is increased by one, one more equation

is obtained which should reduce the set of solutions to a unique solution for almost the

whole solution space. Yet, if we are unlucky, our solution lies on a bad subset �d�1 of

R
d of dimension d�1. By increasing m by 1, we are reducing the subset dimension by 1

until �nally for m > 2d, the bad subsets disappear. We ignore further bad subsets which

can be induced by the input vector but which generically have measure 0 and which do

not disappear with a further increase of m. Therefore, we cannot do better than choosing

m = 2d+1.

Having showed that there is a solution for ~s for all n, we also proofed that there is a

smooth function P as de�ned in equation 2.12. P can be obtained by plugging ~s into 2.11

and iterating. We summarize: There is a smooth and unique function P for generically all

input sequences for m; l > 2d. For m; l = d+1 such a function P exists almost everywhere

in the solution space [Cas92].

2.5 Characterization of Dynamic Systems

There are classi�cation techniques for dynamical systems that apply to any system, no

matter whether linear, nonlinear or chaotic. They all determine invariants of the system,

preferably the embedding dimension of an unknown system. We state once more that the

embedding dimension denotes the minimal state dimension that allows to uniquely represent

the system. The embedding dimension is directly related to the number of internal degrees

of freedom.

The most popular method for dimension estimation is the correlation dimension

method. Given a reconstructed state space (equation 2.1) the correlation integral C(D;N; r)

is de�ned as

C(D;N; r) =
1

N

NX
i=1

Bi(~xi; D; r) (2:14)

where D is the space dimension, N is the number of data points, r denotes a radius around

point ~xi, and Bi() denotes the proportional number of points that are found within the

hyper-sphere around point ~xi. The correlation dimension � is de�ned by the asymptotic

scaling of

C(D;N:r)/ r� :

� can never be bigger than D, yet if D is increased, � will not grow any further as soon as

18

its correct value is found. For chaotic systems � can become non-integer and then de�nes

a fractal dimension.

Lyapunov Exponents quantify the rate of divergence of nearby trajectories. They

measure the deformation of an in�nitesimal small sphere in time. Let's assume a hyper

sphere of the original radius ri(0) in a reconstructed state space of Dimension D. The sphere

is going to be deformed with time into an ellipsoid with the principal axis ri(t); i = 1; 2; :::;D.

The Lyapunov coe�cient �i are then de�ned by

�i = lim
t!1

lim
ri(0)!0

1

t
log

ri(t)

ri(0)
(2:15)

where the �i are usually ordered as �1��2� ::: ��D. The set f�ig
D

i=1 is called the Lyapunov

Spectrum,
P

D

i=1 �i describes the volume expansion rate. Whenever one or more Lyapunov

coe�cients become positive, chaotic behavior is observed. The Spectrum is related to the

system dimension by the Kaplan-Yorke conjecture [Ger96].

Entropy is a further important characterization technique and is also reviewed very

brie
y. We do not discuss estimation problems and computational issues related to a prac-

tical entropy estimator but outline the principle idea. In particular, we do not discuss the

accuracy of the entropy estimator with respect to the number of discrete bins N.

Lets assume a number N of discrete bins that partition the range of the variable xt. A

probability is assigned to every bin which is proportional to the number of data points that

lie within the range of the bin.

The scalar entropy of a time series can then be written as

H1(xt) = �

X
N

p(xt) � log2 p(xt) (2:16)

The entropy of a joint distribution of the signal in two dimensional time lag space is de�ned

as

H2(�) = �

X
Nt

X
Nt��

p(xt; xt��) � log2 p(xt; xt��) (2:17)

Consequently, the block entropy for a D-dimensional lag space vector becomes

HD(�) = �

X
Nt

X
Nt��

:::
X

Nt�(D�1)�

pD � log2 pD (2:18)

with

pD = p(xt; xt�� ; :::; xt�(D�1)�):

Now the redundancy between two block entropies of order D and D+1 can be expressed as

RD(�) = H1(�) +HD�1(�)�HD(�) (2:19)

RD is equal to the scalar entropy of signal xt�(D�1)� , plus the joint entropy HD�1, minus

the joint entropy HD. RD is zero, if the new dimension is completely uncorrelated from the

19

dimensions which de�ned HD�1. RD becomes equal to the scalar entropy H1 if the D-th

dimension is completely determined by the other dimensions.

The system dimension is then equal to the smallest D that makes RD = H1. In order

to be more precise we need to de�ne the source entropy h(�) as

h(�) = lim
d!1

HD(�)�HD�1(�) (2:20)

The dimension now can be calculated as the minimal D for which hD(�) = h1(�).

None of the described techniques has been used for the experimental work of this the-

sis. In fact we concentrated on an alternative class of characterization methods which is

characterization by learning. The embedding dimension we are looking for is the minimum

dimension D which allows the most e�cient prediction of the system. The main quality

of the reconstructed space should therefore be its predictability which can be measured by

the expected variance of its output. D has to be determined by cross validation. One more

description level up, the embedding dimension D could be de�ned as the smallest dimension

D which allows perceptionally optimal sound re-synthesis.

2.6 Preliminary Conclusions

It was been shown in the previous sections that the state space of any driven physical

system can be reconstructed, given access to one observable of the system and to the driving

forces. What does this result imply in the context of musical synthesis? Although there

have been some attempts to characterize the non-linear behavior of acoustical systems in

time-lag spaces [LP88, MLS93], state-space-reconstruction has never been used for musical

synthesis. However, it seems to be most natural to think of a musical instrument as a black

box which expects control information and in exchange puts out an audio signal. Making

music can be interpreted as driving a complex physical device that o�ers a certain range of

signal response.

We decided to follow the concept of state-space-reconstruction for our synthesis goal

and therefore need to �nd answers on the following issues: How many e�ective degrees of

freedom does the system violin have? Which is the minimal embedding dimension? Which

are the relevant inputs and which is the minimal dimension of the input series? Might

there be di�erent time lags within the same time series? More practically we need an

e�cient approximation of the reconstructed state-space. The fact that the existence of such

a space has been proven, is only half way through to its actual reconstruction. The major

part of this thesis, therefore, deals with approximation techniques which extract an explicit

functional form for f (equation 2.11).

To �nish this section we present a simple reconstruction example in order to get a sense

of the possible solution space. The system that comes closest to real world vibrating systems

such as the violin is the quasi periodic system [BPV84, P.71]: Imagine a bi-periodic system

20

−1
−0.5

0
0.5

1

−1.5
−1

−0.5
0

0.5

−1

−0.5

0

0.5

1

Audio Lag Space

x(t)x(t+tau)

x(
t+

2*
ta

u)

Figure 2-4: Quasi periodic attractor in three dimensional lag space. x(t) = sin(2� � 400 �

t) + sin(2� � 1185 � t).

characterized by two frequencies f1 and f2.

y(t) = sin(2�f1t) + sin(2�f2t) (2:21)

Such a system creates a torus T 2 which can be visualized in R3 (�gure 2-4). The trajectory

on the torus may be interpreted as a superposition of two movements: an ellipsoid, described

by the lower frequency and an tournament around that ellipsoidal trajectory caused by the

higher frequency.

If f2=f1 is irrational, the trajectory does never close itself but keeps describing the surface

of the torus. This case corresponds to the undamped steady state of a simpli�ed musical

instrument. Any string instrument tone (piano) can be momentarily described as a slightly

in-harmonic superposition of multiples of the basic frequency, where the inharmonicity is

function of the material properties of the strings.

If f2=f1 is rational, the trajectory is not dense on the torus, but describes a closed and

periodic trajectory in space.

Finally, in order to get to know the space we are working in, we present a reconstructed

piece of violin sound in the time-lag-space (�gure 2-5).

21

−1000

−500

0

500

1000

−1000

−500

0

500

1000

−1000

−500

0

500

1000

1500

Audio Lag Space

x(t)
(x(t+tau)

x(
t+

2*
ta

u)

Figure 2-5: violin audio signal in the three dimensional lag space (4000 data points)

22

Chapter 3

Function Approximation in the

State-Space

3.032 Etwas \der Logik widersprechendes" in der Sprache

darstellen, kann man ebensowenig, wie in der Ge-

ometrie eine den Gesetzen des Raumes wider-

sprechende Figur durch ihre Koordinaten darstellen;

oder die Koordinaten eines Punktes angeben,

welcher nicht existiert.

3.0321 Wohl k�onnen wir einen Gegenstand r�aumlich

darstellen, welcher den Gesetzen der Physik,

aber keinen, der den Gesetzen der Geometrie

zuwiderliefe.

L. Wittgenstein, TRACTATUS

3.1 Bayesian Priors and Regularization

The modeling objective and modeling techniques are most conveniently described in a

Bayesian formalism. `Bayesian language' has become popular in many disciplines, some-

times even overs tressed. In the context of function approximation the Bayesian framework

applies most naturally and directly.

We are looking for the most likely model M given a set of data D. Formally this task

can be described as the maximization problem of a probability density function. The model

M is to be found that maximizes

p(M j D) =
p(D j M) � p(M)

p(D)
(3:1)

The argumentM which maximizes p(M j D), also maximizes log[p(M j D)]. Therefore the

23

maximization problem becomes:

maxMfp(M j D)g = maxMflog
p(D j M) � p(M)

p(D)
g (3.2)

= maxMflog(p(D j M)) + log(p(M))� log(p(D))g

The problem is characterized by a trade o� between three terms. The �rst term evaluates

how well a model describes the data. It can be read the opposite way as the probability

that the data has been generated by the proposed model. The probability is expressed as a

function of an arbitrary error measure. If Gaussian noise is assumed the �rst term becomes

a least square estimate.

The second term evaluates the model. It expresses prior beliefs about what we think is a

good model. These beliefs could be smoothness assumptions or exogenous model parameters

such as the number of basis functionals. In a Minimum Description Length approach this

term penalizes the complexity of the model. In fact the complexity aspect is a concern with

any approximation technique. The model has to be kept small for computational as well as

for `philosophical' reasons.

The third term describes how important speci�c data is evaluated within the total set

of data. This term comes in when on-line search algorithms such as the Kalman Filter

are used. Usually old data is wanted to in
uence the model less than new data, so that

non-stationary behavior can be recognized. This assumption can be translated into a decay

parameter � which reduces the weight of the old data, whenever new data is considered (see

section 4.5.3).

A second related general estimation framework is Regularization theory. It has been

shown in [GJP95] that function approximation can be interpreted and implemented as a

variational problem, which takes into account the data as well as prior assumptions about

the model, in particular smoothness assumptions. Given a set of data g = f(yi;xi) 2

R � R
D
gi
N , we assume that yi has been generated by a function f() : Rd

! R in the

presence of noise. The unknown f() is to be reconstructed, but, as the number on sample

points N is �nite the problem has an in�nite number of solutions; it is ill posed. In order

to �nd the best solution out of the set of possible solutions further constraints have to be

introduced: the Regularization priors. Those additional constraints may be of very di�erent

form. They reach from explicit smoothness priors to more implicit constraints expressed

by the choice of basis functions. In fact the choice of local models represents a very strong

a priori assumption about how the data looks like and what the model should be able to

describe.

The �tting problem is translated into a functional H(f), which is to be minimized with

respect to f():

H(f) =
NX
i=1

[f(~xi)� yi]
2 + � � �(f()) (3:3)

The �rst term measures the estimation error of the model. The second term measures how

well the prior has been realized by the model. It is weighted by the regularization parameter

24

�. A small � indicates that after all we believe strongly in the training data and want any

single data point to be well represented. A high � indicates that we need to avoid over

�tting of noisy data. � is to be determined by cross validation with in-sample or out of

sample data.

[GJP95] proposes a general form for the regularizer �(f()):

�(f) =

Z
RD

j ~F (~s) j2

~G(~s)
d~s (3:4)

where ~F (~s) describes the Fourier transform of f(~x) and 1= ~G(~s) describes a high pass �lter.

�� penalizes high frequency partials in the approximation functional. This particular choice

of � interprets smoothness as a slow change of f() with small changes of ~x. The regularizer

we are going to use in the next section is formally slightly di�erent from expression 3.4, but

expresses the same idea.

As has been mentioned before, besides the formal priors we dispose of a very natural

quality criteria which is perception. No matter how the model architecture and its parameter

look like from a mathematical point of view, the best model is the model that sounds best.

Of course, we hope that perception, physics and mathematical description correlate. We

dream of a model that is described very compactly, that represents the entire physical

behavior of the instrument and at the same time produces the most beautiful sound.

A further general classi�cation of modeling and approximation techniques comes from

the degree of nonlinear descriptive power, built into the basis functions and the parameter

set to be varied. Linear ARMA models do not have any such power. They consist of linear

terms weighted by linear coe�cients. The �rst step toward nonlinear behavior consists in

adding higher order terms to the ARMA model. The output becomes a polynomial function

of the input dimensions. Yet, the set of parameters to be adjusted to the data is a set of

linear coe�cients. They can be found by a least square �t in one single operation (see next

section). In general this class of approximation functions is described by

ŷ =
MX
j=1

aj fj(~x) (3:5)

Given this class of functions the number of basic terms (cross terms) increases expo-

nentially with space dimension. Therefore these techniques do well for 'small' problems,

but they are ine�cient for high dimensional spaces. The next step is to assign a nonlinear

behavior to coe�cients by making them part of the basis terms. The functional form now

becomes

ŷ =
MX
j=1

fj(~x;~aj)i (3:6)

Equation 3.6 expresses the most general form of nonlinear estimation. The coe�cients ~aj

cannot be found by simple matrix inversion anymore. Fancier search techniques have to be

applied, but in exchange the model has become much more powerful.

25

We propose two nonlinear �ts, each of which belongs two one of the classes of nonlinear

approximation techniques.

3.2 A Polynomial Approach

A classical realization of the regularization principle are polynomial approximations. Based

on the idea that orthogonal polynomials span an orthogonal and complete space for the

class of bounded functions, a polynomial approximation scheme can be interpreted as a

non-linear extension of linear state and time series models (see section 2.2.1). We propose a

polynomial model, where the prior assumption is to penalize strong second order derivatives.

Our starting point is a set of data g = f(xi; yi) 2 R
d
�Rg

N

i=1 which has been obtained

by sampling data from an input/output system. In our speci�c application yi describes the

audio signal of the violin, and xi describes the input vector consisting of the actual input

time series, their lagged versions and the lagged vector of the output. We assume that this

set of data is generated by a function f : Rd
! R and has been corrupted by noise. A least

square error function is considered in order to evaluate the �t of the data and the following

functional form is proposed:

f(x) =
KX
k

ak	k(x) (3:7)

with

	k(x) = x1
ek1 � xek22 � :::xekD

D
=

DY
d=1

xekd
d

We denote O the order of our approximation and allow any combination of integer values

for ekd such that ek1+ek2+ :::eKD � O. All these terms are present in the model, including

the constant term e0;d, for which all the exponents eki = 0.

The number of polynomial terms K can be expressed in terms of the space dimension

D and the polynomial order O as [Met96, P.62]

K(D;O) =

(D+ O)

D

!
=

(D+ O)!

D! �O!
: (3:8)

As regularizer the integral over the second order derivative (Laplace Operator)1 of f()

is chosen. This term turns out to be easy to evaluate given that our polynomial terms

are simply superposed, and that we can easily normalize our data on the �nite support

R
D
\ [0; 1]. Note, that such a derivative term in the frequency domain becomes a low-pass

�lter and that therefore our choice is very close to the general form of Regularization terms

1the �rst order derivative is even easier to determine and a mixed regularizer consisting of the two terms

has also been tested. However, as two di�erent weighting terms have to be optimized, the cross-validation

search becomes much more complex.

26

as described in section 3.1 (equation 3.10). The regularizing term becomes

H1 =

Z 1

x1=0
:::

Z 1

xD=0
(�f)2dx1:::dxD (3.9)

=

Z 1

x1=0
:::

Z 1

xD=0

DX
i=1

(
@2f

@x2
i

)2 + 2 �
DX
i=1

i�1X
j=1

(
@2f

@xi@xj
)2dx1:::dxD

and the complete variational term is evaluated as

H(f) = H1 + � �H2 (3.10)

=

Z 1

x1=0
:::

Z 1

xD=0
(�f)2dx1:::dxD + � �

1

N

NX
i=1

[f(xi)� yi]
2

We need to �nd the minimum of H(f) with respect to the parameters of f(). Therefore

H(f) is derived in direction of every single parameter ak :

r~aH = r~aH1 + � � r~aH2 (3.11)

= A � ~a+ � � (B � ~a� ~c) (3.12)

= ~0

where A, B and C denote matrices which describe equation 3.11. ~a denotes the vector of

coe�cients ak. We �nally obtain for ~a

~a = �(A+ �B)�1 � ~c (3:13)

Given this general solution we try to �nd the appropriate value for � by cross-validation

with in-sample and out-of-sample data. This search may take quite a bit of time for high

order approximations of high dimensional spaces, but there is no other way to determine

the right � than by empirical search.

What are the good features and what are the weaknesses of this approach? It is a

well known fact that polynomial approximations are unstable on an in�nite support. For

kxk ! 1, f(x) goes to in�nity also. As we need the approximation to be stable only on

the �nite support which contains the training points, and as this is also the support, where

we apply our Regularization term, we expect our function to behave well for the possible

input data.

Yet, we are confronted with another stability problem which is due to the iterative

structure of our model. As any predicted value is fed back as part of the input for future

predictions, our prediction errors ad up. Input vectors may occur that are not in the range

of x where f() has been trained. This phenomena of non-locality of errors either forces the

system to its �xed point or to in�nity, whereas it is supposed to describe a periodic wave

form. The case where there are no errors or where the errors add up to zero is unfortunately

very unlikely.

Also, polynomials are computationally restrictive, for the number of terms grows expo-

27

nentially with dimension. As we need to calculate and store a K �K matrix2, the number

of terms quickly becomes prohibitive3. This phenomenon is known as the curse of dimen-

sionality. Although we could consider using more computational resources, the principal

problem of high computational cost remains.

The regularizer polynomial model in- and extrapolates pretty well, as will be shown in

section 3.6. It allows to predict points that are placed `far away' from points that have

been part of the learning data, in the input as well as in the output space. Although the

physical meaning of such true out-of-sample points has to be examined, in principle we like

this feature. Due to its high dimensionality we cannot hope to �ll the violin space entirely

with data. Even if the musical solution-space were covered with training points, we need

the system to respond to strange input constellations in the actual synthesis situation as

well.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4
<p> max(p)

y

p(y)

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

y

p(y) max1(p) max2(p)

<p>

Figure 3-1: (a) Deterministic and (b) nondeterministic probability distribution

3.3 Probabilistic Forecasting with Cluster Weighted Local

Models

Instead of �tting a deterministic function as in the last section, we consider a probabilistic

approach. We do not predict a deterministic value, but let the system �nd the most likely

value. The degree of randomness (the variance) will then be a measure for the quality of

our model. A probabilistic approach to function �tting as opposed to deterministic hard

decisions intuitively seems to be more appropriate in the context of prediction problems.

The probabilistic approach literally reconstructs the solution manifold of the state space

by reconstructing its probability density function (PDF). The estimate of the PDF is done

with Gaussian basis functions that weight local models over a limited domain of in
uence.

Although cluster weighted modeling has been used before [Hun92], it has never been de-

scribed in a formalism as compact as the one recently developed by Neil Gershenfeld and

2K denotes the number of polynomial terms (see 3.8)
3The upper most combination of D and O we could a�ord to calculate a parameter set within one day,

was D=6 and O=8.

28

used for this paper4. The novelty of the proposed framework lies in its natural descrip-

tive combination of density estimation and function approximation. We �rst present the

principles and the mechanism of probabilistic estimation and prediction. Then two di�erent

learning algorithms are presented: Clustering by melting and the Expectation Maximization

(EM) algorithm.

3.3.1 Density Approximation of the State Space

Here we present each of the steps of the iterated probabilistic forecasting procedure from

data collection to the actual prediction step. The concept becomes most clear by following

the model to be built up.

Again our starting point is a set of vectors

g = f(Yi;X
D

i
)gN

i=1 = fZD+1
i

g
N

i=1:

ZD+1, Y and XD are particular realizations of the random vector

z = fy; x1; x2; :::; xDg

where x denotes the reconstructed state vector which contains time lags of the audio signal,

the input signals and their lags. y denotes the non-delayed output signal which we intend

to predict. We assume y to be a scalar, but could easily extend the framework to a vectorial

output. The time-discrete, state-continuous case is considered, where the D + 1 elements

of z are elements of R�RD. As there is only a limited set of possible values for z we end

up with a subset

Y � X
D
2 R�R

D:

In order to assure homogeneity in the probability space, we assume the elements xd to share

the same range of R which can easily achieved by normalizing the data set. We also assume

the elements of g to be independent5 and to be drawn from the same continuous probability

density function pz(z). pz(z) is de�ned as

Z
C

pz(z)dz = Pz(z 2 C)

where Pz(z 2 C) denotes the probability of z being part of C 2 Y � X
D. p(z) ful�lls the

usual requirements to a PDF.

Furthermore we de�ne a second PDF px(x) asZ
C

px(x)dx= Px(x 2 C�)

4I explicitly thank my advisor for sharing all his great ideas with me and for letting them be part of this
thesis.

5Although there is obviously a strong dependence between our sample points of a continuous audio signal,

this dependence doesn't a�ect the model building.

29

where C� is a subset of RD. pz and px are not independent but connected by Bayes's-Law

for joint probabilities:

pz(z) = pz(y;x) = p
yjx(y j x) � px(x): (3:14)

In terms of prediction we are most interested in the conditional probability pyjx which

denotes the probability of y given a particular realization X of x:

pyjx(y j x) = p(y j XD; :::; X1) (3.15)

=
p(y;XD; XD�1:::; X1)

p(XD; XD�1:::; X1)

As estimate for px(x) we use a weighted sum of local Gaussian distributions, such that

p̂x(x) =
MX
j=1

!j � �
x

j
(x) 6 (3:16)

with

�x
j
(x) =

1q
(2�)D j Pj j

� e�
1

2
(x�~�j)

T
P
�1

j
(x�~�j): (3:17)

px(x) describes a D-dimensional Gaussian distribution with a mean vector ~�j and a covari-

ance matrix Pj for each j. M denotes the total number of Gaussian basis functions. Qua

de�nition
R
RD �xi (x)dx is normalized to one for all j. !j denotes the weight of the local

model j. We assure px(x) to be normalized by choosing the !j such that
P

M

j=1 !j = 1.

The probability estimate pz(z) has the same overall form as px(x):

p̂z(z) =
MX
j=1

!j � �
z

j
(z) (3:18)

The !j as well as the total number of local modelsM are identical to !j andM in expression

3.16. �z
j
(z) represents a local estimate of pz . It is composed of two terms:

�z
j
(z) = �

y

j
(yjx) � �x

j
(x) (3:19)

where �x
j
(x) has already been de�ned as a D-dimensional Gaussian (equation 3.16), whereas

�
y

j
(yjx) is of the form

�
y

j
(y j x) =

1q
2��

2y
j

� e
�

(
y

j
(x)�y)2

2�
2y

j (3:20)

	
y

j
(x) describes a local function that approximates y givenX. We need 	

y

j
(x) to be bounded

and smooth in the domain of in
uence which is characterized by ~�j , �
y

j
, Pj and !j . This

condition will be discussed further down once we clearly know the task of 	
y

j
(x).

In the simplest case 	
y

j
(x) is a constant function 	

y

j
(x) = �

y

j
. For that particular choice

6p̂ is used for estimated or predicted values whenever the distinction is contextually unclear.

30

of 	
y

j
(x) �

y

j
(yjx) reduces to an ordinary one-dimensional Gaussian distribution. However,

	
y

j
(x) may be chosen arbitrarily complex as a non-linear function, e.g. as a superposition

of polynomials or it may become a probabilistic local model by itself. We need to show that

�z
j
(z) is normalized to one in order to ful�ll the requirements of a PDF:

Z
R�R

�z
j
(y;x) dx dy (3.21)

=

Z
R

Z
RD

�
y

j
(yjx) �x

j
(x) dx dy

=

Z
RD

Z
R
�
y

j
(yjx)dy| {z }
I(x)

�x
j
(x) dx

I(x) is normalized to 1, because any possible (bounded) value for 	
y

j
(x) and therefore any

possible value for x 2 RD converts �
y

j
into a one dimensional Gaussian distribution over

R. As this Gaussian is normalized by �
y

j
the integral over R results in unity. We are left

with the outer integral, a multidimensional Gaussian. However, it has already been shown

that
R
RD 1 ��x

j
(x) dx = 1. Therefore our PDF is perfectly normalized, although that was not

obvious at �rst glance. The above demonstration also clari�es that �
y

j
(yjx) must indeed be

interpreted as a conditional probability p(yjx), as for any given realization X of x a PDF

over y only is obtained.

We shortly discuss particular choices for 	
y

j
(x). These choices become really meaningful

once we consider the prediction step.

a)

	
y

j
= �

y

j
(3:22)

If 	
y

j
is chosen constant for all x, �z

j
(z) becomes a D+1 dimensional Gaussian PDF,

de�ned by ~�z
j
= (�

y

j
; ~�x

j
) and Pz . Pz is directional only in the x-dimensions, not in

y-direction. A further simpli�cation is done by choosing all the Gaussian directional

with the space axes. Then Pz reduces to a diagonal matrix and all the Gaussians

become separable. Although this is the actual form of Pz we are using, we keep

describing the model architecture in the general form.

b)

	
y

j
(x) = aj + bj � (x� ~�j) (3:23)

	
y

j
(x) describes a linear function of x. aj represents the mean value of �

y

j
which is

predicted for x = ~�j . Any deviation of x from ~�j results in a linear correction of the

predicted values.

c)

	
y

j
(x) = a0 +

KX
k=1

ak �

DY
d=1

(xd � �d
j
)e
d
k (3:24)

	
y

j
(x) is a polynomial function of x anchored at ~�j . This model has already been

31

subject of discussion as a global estimator with anchor point 0. The parameter search

algorithm is naturally derived from the global search as discussed in section 3.2.

We summarize the approximation elements: px(x) describes the probability of observing

the input-state-vector x, pz(z) describes the joint probability pz(y;x) of observing the state

vector x and the output scalar y at the same time. We denote �z

j
the set of parameters which

describe �z
j
(z), including Pj , ~�j , �

y

j
and the parameters which describe 	

y

j
. We denote �z

and �x the total set of parameters that characterize pz and px. Note that �
x
2 �z . Once

pz is found, px is determined as well.

3.3.2 The prediction step

Let's assume a parameter-set �z has been found that describes the training data set reason-

ably well with respect to some error measure. In order to reconstruct a prediction surface

y(X), we need to calculate p(yjx)(yjX) by Bayes' rule:

pyjx(y jX) =
p(y;X)

p(X)
(3.25)

=
p(y;XD; XD�1; :::; X1)

p(XD; XD�1; :::; X1)

=

P
M

j=1 !j � �
y

j
(y;X) � �x

j
(X)P

M

j=1 !j � �
x

j
(X)

(3.26)

pyjx(y j X) evaluates a likelihood for y given a speci�c input vectorX. In order to transform

this likelihood into a prediction function we consider three possible solutions:

� ŷ = y j maxyfpyjx(y j X)g. It seems to be most natural to choose the particular y

which maximizes the conditional probability pyjx. In this case the most likely value

for y is predicted. In the limit of the `perfect model', the prediction surface becomes

completely deterministic, with pyjx = 1 for y = ŷ.

However, though intuitive, this choice turns out to be the most di�cult and expensive

one in terms of computation. Even if we consider the easiest form for pz(z) with a

diagonal covariance matrix Pj and 	
y

j
= �

y

j
, the maximization problem could not

be solved analytically. There are in fact applications where the resolution is `poor

enough', so that pyjx can be computed for any possible value of y and then the y is

chosen that maximizes pyjx. This method was used, e.g., for 8 bit representations of

image pixels [PP93]. Yet for 16 bit audio samples this method is prohibitive, especially

as each pyjx is computationally expensive by itself.

� ŷ could be obtained by a random draw from pyjx(y j x). On the one hand this approach

reintroduces stochasticity into sound-prediction, after some characteristic noise has

been eliminated in the learning process. On the other hand this system would assure

deterministic behavior in the deterministic limit, as any draw from a deterministic

32

−2

0

2

−2

0

2
−2

−1

0

1

2

Time Lag Space

x(t)x(t+tau)

x(
t+

2*
ta

u)

−2

0

2

−2

0

2
0

1

2

3

4

x(t)x(t+tau)

p

Probability Density Function

−2.5

0

2.5 −2.5

0

2.5
−2

−1

0

1

2

x(t)
x(t+tau)

<
y|

x>

Expectance (y|x)

Figure 3-2: (a) Sinusoid in the reconstructed time-lag-space. The axis de�ne cluster centers

on the orbit. (b) Probability density function of the sinusoid. (c) Expectation <pyjx > of

the sine wave

33

probability function results in the one value y for which pyjx = 1. However, the

random draw is computationally expensive as well, as a random number generator as

well as the inverse function of P
yjx is needed. We do not know whether the perception

would justify this computational e�ort.

� ŷ = Efpyjx(y jX)g =
R
R y � pyjx(y jX) dy. It may look like the least obvious solution

to use the expected value of y for ŷ. Yet, this approach has been exploited for this

work for two major reasons:

First, given our special form of pyjx, the expectation of y is computationally most

e�cient to determine. For all considerable local models the expression for < pyjx >

reduces to a simple weighted sum over local experts.

Secondly, one could be concerned that < pyjx > may not coincide with the maximum

value of p due to a bimodal form of the PDF. Given an arbitrary PDF such as shown

in �gure 3-1(b) ŷ =< p > does not correlate at all with the two likely values for y.

However, remember that we chose an embedding dimension which assures y(x) to lay

on a single valued surface. Therefore a situation as shown in �gure 3-1(b) should never

occur. Or, from the opposite point of view, we could state that, if such a situation

occurs, the embedding dimension has been chosen badly.

Brie
y, given the Gaussian structure of our model, we expect pyjx to have one global

maximum that coincides with < pyjx >, as shown in �gure 3-1(a). The experiments

we did proved this assumption valid.

Which is the particular form of < pyjx >, given our speci�c form of px and pz?

< pyjx > =

Z
R
y � pyjx dy (3.27)

=

Z
R
y

P
M

j=1 !j �
y

j
(y;X) �x

j
(X)dyP

M

j=1 !j �
x

j
(XR)

=

P
M

j=1

R
R y �

y

j
(y;X)dy !j �

x

j
(X)P

M

j=1 !j �
x

j
(X)

We de�ne a local predictor ŷj as

ŷj =

Z
R
y � �

y

j
(y;X)dy (3.28)

=

Z
R
y �

1q
2��

2y
j

� e
�

(
y

j
(X)�y)2

2�
2y

j dy

= 	
y

j
(X);

34

and obtain a weighted sum over all local predictors

ŷ =< pyjx >=

P
M

j=1	
y

j
(X !j �

x

j
(X)P

M

j=1 !j �
x

j
(X)

: (3:29)

P
M

j=1 !j � �
x

j
(X) represents the partition function of the local models. It is going to play a

major part in the learning algorithms (EM).

For 	
y

j
= �

y

j
and Pj = ~�x

j
(diagonalized Pj) this expression becomes a sum over constant

values, weighted by separable Gaussian distributions.

ŷ =

P
M

j=1 �
y

j
� !j �

Q
D

d=1 �
d

j
(Xd)P

M

j=1 !j �
Q
D

d=1 �
d

j
(Xd)

(3:30)

with

�d
j
(xd) =

1q
2��d2

j

� e
�

(Xd
j
��d

j
)
2

2�d
j

2

:

For a linear function 	
y

j
we obtain

ŷ =

P
M

j=1(aj + bj �X) � !j �
Q
D

d=1 �
d

j
(Xd)P

M

j=1 !j �
Q
D

d=1 �
d

j
(Xd)

(3:31)

At this point we reconsider the stability of our system for point prediction. We need ŷ

to be �nite for any bounded vector x. Obviously we can assure that by choosing 	
y

j
(x) to

be bounded for all possible x. Unfortunately this is about all we can say in general. As we

are dealing with partition functions, it is clear, that even for a vector X which is `far away'

from ~�j expert j may nevertheless be in charge of that X. In fact for any x with kxk ! 1

there is a expert that becomes stronger than all the others and therefore is in charge of

prediction. This expert should rather be bounded!

Also the stability problem for iterated prediction that occured with polynomial models

in section 3.2, arises again with cluster weighted modeling. There may be a way to tune

a model such that intrinsic instabilities of the di�erent experts add up to a global stable

model even for iterated prediction. However, that solution seems to be quite di�cult to

achieve. To solve the problem of iterated prediction, there are basically two possibilities:

1. Choose 	
y

j
(x) = �

y

j
. For this special case we know, that clusters are stable. Yet, we

give up the powerful behavior of local models.

2. Choose 	
y

j
(x) such that it decays to a �xed value (xj � ~�j) ! 1. We did not test

this class of functions. Yet, it looks like the class of functions that work with cluster

weighted modeling are those that are bounded or periodic, e.g. sigmoidal functions.

Further work should be done on this topic.

Another possible solution could be a linear feedback which compares the amplitude of the

output to a desired value and works on the amplitude of the iterated space coordinates.

35

To illustrate the basic steps of cluster based prediction, �gure 3-2 shows the prediction

steps for a sine wave. A sine wave becomes a
at ellipsoid in the time lag space (3-2(a)).

It' orbit is approximated by clusters which expand a PDF(3-2(b)). The PDF can be used

for prediction or to construct a prediction surface on x (3-2(c)).

3.3.3 Learning and Search

We believe our data to be represented or generated by classes, the local models. Only

we do not know how these classes look like. We do not know their principle structure, the

structure that all local models have in common. Neither do we know their particular con�g-

uration characterized by the local parameter set �z

j
. Our priors are not only determined by

belief in the most powerful local basis function but also by considerations of computational

practicability, search algorithms and convergence behavior. Once again, the best prior we

could possibly realize is the one, that helps us to reproduce the best violin sound, given our

resources. Philosophical considerations may only be helpful to ful�ll our perceptional task.

In the following sections we review two search methods of unsupervised learning and ex-

tend them for the use with cluster weighted local experts. Both of the proposed algorithms,

clustering by melting and the EM algorithm, are least square search algorithms which min-

imize the systems entropy with respect to the data and the unknown model parameters.

As there are plenty of analogies between the search techniques and a statistical mechanics

language we use this pre-formulated terminology whenever possible and reasonable.

3.4 Clustering Data by Melting

We assume �
y

j
constant (�

y

j
= �

y

j
) for now. The extension for arbitrary �

y

j
becomes easy

with the EM algorithm in the next section. Whenever we are talking about clusters in the

following, we implicitly mean classes as well. We assume a cluster/class to be an internal,

hidden state of our system that is 'responsible' for some subset of the observed data. There

is no physical meaning or justi�cation behind this prior7. Hidden states are no more than

a convenient way to describe the optimization problem of �tting basis functions to some

data. They can be seen as a metaphor.

The basic principles that characterize clustering data by melting are the following:

� Clusters do not interact. They try to describe local data with respect to their proper

likelihood maximum.

� A priori there are no speci�c assumptions concerning the data distribution. An ar-

bitrary cost function (energy cost) has to be de�ned. We denote Ei;j the energy

associated with the assignment of data point zi to cluster center ~�
z

j
.

� Clusters which happen to describe the same data and share the same center are melted.

The starting number of clusters is therefore higher than the �nal number of model

7It is in fact remarkable how little common machine learning literature notices the fact that nature usually

does not describe states at the scaling of clusters.

36

clusters. In fact we can only hope to obtain a good partitioning of our space if we

lose enough clusters due to melting during the iteration steps.

� Clustering data by melting only �nds ~�x
j
and �

y

j
. It does not serve as search for the

!j and the Pj . Those variables must be found afterwards. There is no distinction

between cluster directions during the search.

Theoretical Foundations and the Thermodynamic Analogy

We denote Ei;j the energy associated with the assignment of data point zi to cluster Cj.

We denote pi;j the relative probability factor of point xi being generated by cluster Cj,

considering one single cluster Cj only. We then obtain an average total cost associated with

our system:

< E >=
MX
j=1

NX
i=1

pi;j �Ei;j (3:32)

Expression 3.32 serves as the boundary condition for the data distribution. We assign

a certain total energy or temperature to our system that is directly related to < E >.

Furthermore we use the principle of maximum entropy to �nd a stable distribution at each

iteration step. Given the constraint 3.32, the pi;j that maximize the total entropy

H = �

MX
j=1

NX
i=1

pi;j log2(pi;j) (3:33)

are Boltzmann distributions of the form

pi;j = e��Ei;j=Zj (3:34)

where Zj denotes the partition function

Zj =
NX
i=1

e��Ei;j ; (3:35)

and � denotes the Lagrange multiplier of the minimization problem. It is determined by

the choice of <E >. In the thermodynamic analogy it is proportional to 1=T . Therefore

decreasing � implies increasing activity and disorder in the system, whereas a high � freezes

the system and lets only the closest data points in
uence a cluster.

Pushing the thermodynamic analogy ahead we de�ne the e�ective cost function F . As

we assume independence between clusters and between the pi;j of di�erent clusters, we

de�ne Fj as the free energy associated with one cluster Cj
8:

Fj = �1=� � logZj (3:36)

8Note that the thermodynamic free energy consists of two terms. We will �nd the second term in the
next section in the context of a convergence proof.

37

The condition for a minimum of the e�ective cost naturally becomes

�~�j
Fj = 0; 8j: (3:37)

This gives us j conditions for our j clusters centers ~�j which we could exploit for any cost

function Ei;j. It is only now that we choose a particular form for Ei;j, the square distance:

Ei;j = j zi � ~�z
i
j
2 (3.38)

= j yi � �
y

i
j
2 + j xi � ~�x

i
j
2

Plugging expression 3.39 into equation 3.37 we end up with an implicit equation for ~�z
j
:

~�z
j
=

NX
i=1

ze��(z�~�
z
j
)2P

N

i=1 e
��(z�~�zj)

2
; (3:39)

Solutions for ~�z
j
cannot be computed analytically, however, they can be obtained by �xed

point iterations of map 3.40:

~�z
j
(n+1) =

P
N

i=1 ze
��(z�~�zj (n))

2

P
N

i=1 e
��(z��z

j
(n))2

(3:40)

3.40 is iterated until stability of ~�z
j
. This iteration process assures convergence in a local

minimum with respect to the initial conditions and to a certain �. � translates our notion

of the scaling of the data. It also re
ects the number of clusters which we want to represent

the data.

In order to obtain a reasonable partition of the data set we start with a high � and a

high number of clusters. We then iterate until convergence, remove one of those clusters

that have become identical, decrease � and iterate again. Ideally the complete set of data

points is used to initialize the clusters, in order to assure any data point being covered by

the model. In praxis fewer clusters may be enough, if chosen carefully.

We propose the complete melting algorithm [Wo93]:

1. Initialize clusters by assigning a cluster to each of the data points or by assigning a

reasonable number of clusters to a subset of data points.

2. Choose �max such that the system is quasi frozen and set � = �max.

3. Iterate according to map 3.40 n times or until convergence.

4. Keep only one cluster of subsets of clusters that have become identical.

5. If there is too many clusters left, decrease � and go to 3.

For any value of � the converged state represents an entropy minimum. However, neither

model nor data alone tell us which of these states best describes the data. In fact one of the

weak points of this search algorithm is the fact that there are many parameters left that

38

must be tuned `by hand'. Important parameters such as �max, the �nal number of clusters

and the decay factor for � must be �xed from experience or by cross-validation. This is

particularly critical, as the algorithm by itself is already computationally expensive. Also,

these cross-validation iterations do not go very well with the idea of unsupervised learning.

Once the cluster centers are found we need to determine the remaining parameters of

�z . The �rst approach that we consider is based on the concept of hard-clustering and the

K-Means Algorithm [DH73]. We do not review these algorithms, but remind the reader

that in a hard-clustering framework every data point is assigned with probability pi;j = 1

to exactly one cluster and with probability pi;j = 0 to each of the other clusters. pi;j is one

for the j that minimizes the distance di;j where di;j stands for the Euclidean distance. If

we calculate pi;j for each i and j, we de�ne j subsets of points Cz

j
. A point zi belongs to

Cz

j
if and only if pi;j = 1. The sum over the elements in our subsets therefore is the same

as the total number of points.

Given the Cz

j
we calculate !j and Pj as follows. The Pj are assumed to be diagonal

and therefore can be expressed by ~�2z
j

9. This assumption seems to be reasonable, because

the clustering algorithm does not take into account directional resolution of clusters at all.

!j =
Nj

N
(3.41)

~�2z
j

=
1

Nj

X
z2Cz

j

(zj � ~�j)
2

where Nj denotes the cardinality of the subset of points associated with cluster Cj .

With the spirit of soft clustering in mind a second method to calculate !j and �2z
j

is

considered. Once again a � is chosen which we belief represents the scaling of our training

data set and the number of clusters we obtained. E.g., the � may be used that had been

used for the last melting iteration. Then a probability �i;j is calculated that expresses the

total probability of a point i being generated by a cluster j.

�i;j =
e��(jzj�~�j j

2P
j
e��(jzj�~�j j

2
(3:42)

is characterizing a soft assignment between each data-point and each cluster. The parameter-

set is then calculated as follows

!j =

P
N

i=1 �i;jP
M

j=1

P
N

i=1 �i;j
(3.43)

~�x
j

=

P
N

i=1 j xj � ~�x
j
j
2
��i;jP

N

i=1 �i;j

�
y

j
=

P
N

i=1 j yj � �
y

j
j
2) � �i;jP

N

i=1 �i;j

9Fully directional Pjs would require an eigenvalue decomposition of the data-subset owned by a cluster.

39

Neither of the two proposed methods is better from a theoretical point of view. And in

fact none of the two methods gives the right results for the parameters we were looking for.

Fortunately we need not care too much about how well clusters overlap, as eventually they

are only used for weighting in the prediction step. However smooth overlapping becomes

important in border regions between two basis functions where clusters are supposed to

interpolate.

In order to guarantee a smooth probability function, variances may be tested with

uniform data distributions. Then an additional factor � varies the variances such that the

estimated distribution becomes as uniform as possible.

~~�
2x

j
= � � ~�2x

j
(3.44)

~�
2y
j

= � � �
2y
j

This method is empirically motivated. In [PP93] � � 1:5 was found as a reasonable value

for �. In our own experiments, we usually used � = 1 for the above mentioned reason that

our main goal consists in weighting local models, not in most properly approximating the

state-density.

3.5 The EM Algorithm

The EM (Expectation-Maximization) algorithm is another iterative technique for maximum

likelihood approximation of training data. It has been applied to simple unsupervised

learning in pattern recognition and machine learning problems. It was generalized to more

complex systems such as hierarchical expert models [JJ93] and to Hidden Markov Models.

Each iteration of EM consists of an Estimation(E) and a Maximization(M) step. The

E-step evaluates a probability distribution for the data given the model parameters form

the previous iteration. The M step then �nds the new parameter set that maximizes the

probability distribution. In a generalized EM algorithm (GEM) the M step does improve

the data likelihood but is not iterated until full convergence.

We review the EM algorithm in its simple non-hierarchical form for Gaussian basis

functions and extend it to an application with cluster weighted local modeling. We show

how the extended version of EM �ts into the thermodynamic analogy and why convergence

to local minima is assured by conventional proofs.

The EM algorithm is based on the idea that there is a set of `hidden' variables that

relates the data to the unknown states (clusters). If those `hidden' or missing variables

were known, the maximum likelihood distribution would be easy to calculate. As they are

unknown we need a fancier technique to reconstruct the probability estimate. We try to be

consistent with the notation used so far and denote furthermore:

Z : the observed data.

W : the unobserved data. Note that what the unobserved data actually represents is not

made explicit. This lack of clearness may bother the reader in the beginning. However,

40

eventually it turns out to be very handy.

V : the complete data (Z +W = V).

�z : The set of variables relating Z and W .

We assume a joint probability p(Z ;W j �z) for Z and W , conditioned by �z . Summing

over W we obtain a marginal probability for Z p(Z j �z) =
P
W p(Z ;W j �z). Ultimately

we are searching for the set �z , that maximizes p(Z j �z) and therefore also maximizes the

log-likelihood log p(Z j �z) [NH93]. The E and the M step are repeated successively with

increasing n:

E-step: Calculate the complete data-likelihood given the known data Z and the current

set �z

n�1
10.

~pn(W = P (W j Z ;�n�1) (3:46)

M-step: Calculate the �n that maximizes the expectation of the joint probability p(W ;Z j

�).

�n = max
�

E(p(W ;Z j �)) (3:47)

The concrete update rules of E- and M-step will be discussed further down.

Back to the Thermodynamic Analogy

Let's recall some results from the last section. We de�ned a partition function Zj and the

corresponding free energy Fj of a single Cluster in equation 3.36. Minimizing (3.37) led to

the implicit expression 3.39 for ~�z
j
. In order to get interaction between clusters and in order

to �nd an overall entropy minimum, instead of single Zjs now consider the total partition

function

Z =
MY
j=1

Zj (3.48)

and the corresponding e�ective cost function

F = �
1

�
� logZ (3.49)

= �
1

�

MX
j=1

� logZj

10Concretely we need to calculate the following conditional probabilities, that relate a speci�c data point

and a speci�c cluster. We denote this probability �i;j. The meaning of �i;j will become clear in the following.

�i;j =
pi;jPM

j=1
pi;j

(3:45)

where pi;j has been de�ned in equation 3.34.

41

Again we specify the cost function Ei;j as the square distance between data point ~xi and

cluster Cj . However, as we do not assume a special form of 	
y

j
we need to �nd a special

arrangement for the y-direction of our space. We de�ne

Ei;j =j ~xi � ~�x
i
j
2 + j �

y

j
(~xi)� yi j

2 (3:50)

Given this cost function we obtain

pi;j =
e
��[j~xi�~�

x
i
j2+j	

y

j
(~xi)�yij

2]

P
N

i=1 e
��[j~xi�~�

x
i
j2+j	

y

j
(~xi)�yij2]

(3:51)

and furthermore

F = �
1

�

MX
j=1

logZj (3.52)

= �
1

�

MX
j=1

log
NY
i=1

e��Ei;j

= �
1

�

MX
j=1

log
NY
i=1

e��[j~xi�~�
x
i j
2+j	

y

j (~xi)�yij
2]

Deriving this expression with respect to the �d
j
we obtain d�M equations for the ~�x

j
:

@F

@�d
j

=
NX
i=1

(xd
i
� �d

j
) � e��Ei;jP

M

j=1 e
��Ei;j

= 0 (3.53)

Unfortunately equation 3.53 cannot be solved analytically. However, we may obtain a

solution for �d
j
by �xed point iterations of the following map:

�d
j
(n+1) =

P
N

i=1
x
d
i
�e
��Ei;jPM

j=1
e
��Ei;jP

N

i=1
e
��Ei;jPM

j=1
e
��Ei;j

(3:54)

In 3.54 we �nd back the expression for �i;j as used in equation 3.45 The update rule for ~�j

becomes a weighted sum over the locations of the data points. As opposed to the update

rules in the melting algorithm, now there is interaction and repulsion between clusters.

Clusters share points, but the assignment of points is such that the total weight of any one

point is one. The update rule can be written as

~�x
j
(n+ 1) =

P
N

i=1 xi � �i;jP
N

i=1 �i;j
(3:55)

with

�i;j =
pi;jP
M

j=1 pi;j

42

and

pi;j = e��Ei;j :

In order to �nd the parameters of 	
y

j
we need to go back to the de�nition of F . Let's

denote �	
j
the set of parameters which characterize 	

y

j
, with �	

j
= f�1

j
; �2

j
; ::::; �K

j
g. We

now derive F with respect to the parameters �.

@F

@�k
j

=
NX
i=1

(
y

j
(~xi; �

1
j
; �2

j
; :::; �K

j
)� yi) �

@	
y

j

@�
k
j

� e��Ei;jP
M

j=1 e
��Ei;j

= 0 (3.56)

For 3.56 to be solved a particular choice for 	
y

j
has to be made. In section 3.3.1 three

major possibilities to express 	
y

j
have been de�ned. For 	

y

j
= �

y

j
there is only one more

parameter �
y

j
to be calculated, in perfect analogy to equation 3.55. For the local linear

model, as de�ned in equation 3.23 we obtain a condition for aj and d conditions for bj .

@F

@aj
=

NX
i=1

(yi � bjxi � aj) � e
��Ei;jP

M

j=1 e
��Ei;j

= 0 (3.57)

@F

@bd
j

=
NX
i=1

(yi � aj � b
�
j
x�
i
) xd

i
� e��Ei;jP

M

j=1 e
��Ei;j

= 0 (3.58)

with

b�
j
= [b1; b2; :::; bd�1; bd+1; :::bD]

x�
i
= [x1; x2; :::; xd�1; xd+1; :::xD]

We transform the implicit form of expression 3.57 and 3.58 into �x point iterations and

obtain

aj(n+1) =

P
N

i=1(yi � bjxi) � �i;jP
N

i=1 �i;j
(3.59)

bd
j
(n+1) =

P
N

i=1(yi � aj � b
�
j
x�
i
) � xd

i
� �i;jP

N

i=1 (x
d

i
)
2
� �i;j

Finally we also give the �nal �x-point map for the general polynomial model as de�ned

in 3.24.

ak
0

j
(n+1) =

P
N

i=1(yix
d

i
� aj �

P
k 6=k0 a

k

j
)(
Q
D

d=1 x
n
d

k0

id
) � �i;jP

N

i=1(
Q
D

d=1 x
2nd

k0

id
) � �i;j

(3:60)

The Final Update Rules

The equations and update rules we developed so far depend on the scaling factor �. Yet, we

want the clusters to discover the scaling of the system autonomously. Also clusters should

be
exible enough to dominate regions of di�erent sizes. Therefore the original de�nition

43

of pi;j (3.34) is replaced by

pi;j = �
y

j
(yijxi) � �

x

j
(xi) (3:61)

with

�x
j
(x) =

1q
(2�)DjPj j

� e�
1

2
(x��j)

T
P
�1

j
(x��j)

and

�
y

j
(y j x) =

1q
2��

y2
j

� e
�

(
y

j
(x)�y)2

2�
y2

j :

We also need to reformulate the expression for �i;j , the probability of data point xi being

generated by cluster Cj .

�i;j =
�
y

j
(yi j xi) � �

x

j
(xi)P

M

j=1 �
y

j
(yi j xi) � �

x

j
(xi)

(3:62)

Now every cluster has its own directional scaling properties. These properties may change

during the EM-iterations as the scaling parameters are updated themselves.

In the practical application we use a diagonal covariance matrix, such that Pj = I �~�2x
j
.

We are now ready to propose the remaining M-step update rules. ~�2z
j

follows directly from

3.55:

~�2x
j
(n+1) =

P
N

i=1(x
x

i
� ~�x

j
)2 � �i;jP

N

i=1 �i;j
(3.63)

�
2y
j
(n+1) =

P
N

i=1(yi � �
y

j
)2 � �i;jP

N

i=1 �i;j

The cluster weight is supposed to re
ect the number of points the cluster is owning,

which can be expressed as follows:

!j(n+ 1) =

P
N

i=1 �i;jP
M

j=1

P
N

i=1 �i;j
(3:64)

We introduce a further factor
, that turned out very useful in the practical implemen-

tation.

~�i;j = �

i;j
;
 2 R+ (3:65)

The convergence rate of the model parameters in some cases turned out to be fairly bad.

However, particular choices of
 for particular data increased convergence speed and ac-

curacy of the model signi�cantly. The values for
 are usually between 1 and 2, but the

optimal
 may even be smaller than 1 or� 10. Any
 > 1 makes decisions clearer, because

an increased
 lets ~�i;j behave like a sharper and sharper step function. This shape seems

to enforce faster convergence, with the trade o� that clusters might get stuck to early.

does not really �t in the theoretical framework we proposed. However empirically it turned

out to be very important.

44

An Alternative Update

We proposed a method to calculate the parameter set of the local functionals �j by �xed

point iterations, which can be derived within the EM formalism. However, there is a

non-iterative maximum likelihood solution which is based on the same idea as the global

polynomial approximation in section 3.2.

Our starting point is once again the derivative of the free energy:

@F

@ak
0

j

=
NX
i=1

pi;j � (yi �
P

K

k=1 a
k

j

Q
D

d=1 x
n
k
jd

id
) �
Q
D

d=1(x
n
k0

jd

id
)

pi;j
= 0 (3.66)

We use the convention
NX
i=1

pi;j ��(i; j)

pi;j
=< �(i; j)>i

and denote furthermore

�k =
DY
d=1

x
n
k
j;d

i;d

�0 = 1:

so that a0
j
denotes the coe�cient of the constant term. Equation 3.66 becomes

0 = < yi ��
k
0

> �(
X
k

�k) ��k
0

> (3.67)

= < yi ��
k
0

> � < a0�
0�k

0

> � < a1�
1�k

0

> �:::� < ak�
k�k

0

> (3.68)

and we end up with a system of K equations for K coe�cients:

~0 =

2
6666664

< yi ��
0 >i

< yi ��
1 >i

:

:

< yi ��
K >i

3
7777775
� ~a �

2
66664

< �0�0 >i < �1�0 >i ::: < �K�0 >i

< �0�1 >i < �1�1 >i ::: < �K�1 >i

::: ::: ::: :::

< �0�K >i < �1�K >i ::: < �K�K >i

3
77775

= < yi � ~�j > �~a � �
j

(3.69)

�
j
denotes the weighted covariance matrix with respect to cluster j. It has the same form

as A in section 3.2 for the global polynomial model, except that this time the in
uence of

any single point on a particular local model is weighted. In the limit of a one cluster model

�
j
becomes identical to A in equation 3.13. We invert � and obtain

~aj = ��1
j
� < yi � ~� > (3:70)

Using this method optimal values for ~a are evaluated at each iteration. It therefore may be

considered to determine �
y

j
only occasionally after multiple updates of the ordinary cluster

45

parameters. Alternatively, the parameter search for the clusters could be done in the input

space only �rst. The local functions would then be evaluated with the cluster centers kept

�xed.

Convergence

The system is supposed to converge towards a likelihood maximum of the model given the

data, which corresponds to an entropy maximum of the clustered space. As the iterative

EM algorithm consists of two di�erent steps, total convergence is proved once convergence

of either one step is proved.

It has been shown by Neal and Hinton [NH93] that there is a functional form F (~P ;�)

that relates the E and the M step with respect to a general error term

F (~p;�) = E~p[log p(W ;Z j �)]� E~p[log ~p(W)] (3.71)

= E~p[log p(W ;Z j �)] +H(~p)

where Z is the observed data and W describes the hidden parameters. The �rst term of F

corresponds to the E-step and to the average energy in the thermodynamic analogy. The

second term corresponds to the M step and the system's thermodynamic Entropy. Ignoring

a change of sign the functional F (~p;�) is equivalent to the physical free energy F .11 Finally

an expression has been found that describes both terms of F and the analogy seems to be

completed, which is nice from a systems theoretical point of view and which is very helpful

in terms of understanding EM. Due to the change of sign we need to maximize F .

Neal and Hinton showed that any partially or completely performed E or M step results

in an independent increase (stagnation for converged systems) of the corresponding term

in F (~p;�). They also proved that any such iteration also increases the log�likelihood

log p(Z j �), which forces the system towards a local maximum of log p(Z j �).

We do not review the proof in this paper, but we would like to know how it relates to

our extension of cluster based density estimation. In fact the proof remains valid because

we expressed any extension of Cluster modeling as a change in the energy cost function. We

recall that we de�ned our proper Ei;j(�j) as opposed to an ordinary square distance energy.

This simple change in the cost function lets the principle proof unchanged, although the

�nal model looks di�erent from an ordinary cluster model.

Unfortunately we did not succeed in expressing
 in an equivalently compact way. We

do not know its theoretical e�ects on the stability, but we got to know it as an empirically

very useful additional parameter.

11The de�nition of the free energy we have in mind is

F = W � TS (3:72)

where W denotes the energy, S the entropy and T the temperature of the system.

46

3.6 Empirical Tests

It has been shown that the proposed algorithms converge towards some sort of `best solu-

tion'. Unfortunately, the theoretical proofs have little to do with practical implementation

issues. Nothing can be said a priori about convergence speed, about the necessary number

of iterations until convergence, nor about the approximation error. Therefore, a set of test

functions was used, in order to compare our algorithms quantitatively.

We de�ne the following test functions of the form R� R ! R. All the data is either

normalized to the support [�1; 1]� [�1; 1] or to zero mean and unit variance:

Uniform Probability Density Function: p(x; y) = constant. p(x; y) = 1=4 for j x j; j

y j� 1, p(x; y) = 0 every where else. The data is seeded on a lattice for x; y 2 [�1; 1].

This function mainly serves to calibrate the Gaussian Distributions. It represents the

'di�cult case' of perfectly symmetric data.

Gaussian Distributions: Data drawn from a two dimensional Gaussian distribution is

seeded around �ve anchor points (xg; yg), g = 1; ::; 5, (�2g
x;y

= 1), 100 points per

Gaussian). z is calculated as a linear function fg(x; y) = ag + bg
x
� x + bg

y
� y. The

following parameters have been used:

xg yg ag bgx bgy

1 0.5 0.5 0.5 1 0

2 -0.5 -0.5 0.5 0 -1

3 0.5 -0.5 -0.1 0.5 0

4 - 0.5 0.5 0.1 0 -0.5

5 0 0 0 1 1

The whole data set is noted, in order to test whether the polynomial model recovers

the original parameters exactly.

Step Function: z = f(x; y) = 1 for j x j; j y j� 1, z = f(x; y) = 0 everywhere else. The

data is seeded randomly on x; y 2 [�1; 1].

Sinc Function: z = sin3�R
3�R , with R =

p
x2 + y2. 4000 data points are seeded randomly

on x; y 2 [�1; 1]� [�1; 1]. See �gure 3-5.

Polynomials z = f(x; y) = 0:5 �x+ y� 0:5 �xy+0:25 �x3� 0:25 � y3. The data is randomly

seeded on x; y 2 [0; 1]� [0; 1].

For the polynomial-based approximation as well as for the cluster based EM approxi-

mation the following criteria have been used:

� Number of basis termsM . For the EM approximation this number corresponds to the

number of clusters, for the polynomial approximation it corresponds to the number

of polynomial terms.

47

Data Number

of

Points

Number

of

Clusters

 Iterations

until

Convergence

Maximal

Error

Average

Error

Remarks

Uniform
PDF

441 33 1.2 53 0 0

Gaussians 500 5 0.9 16 0:1 8 10�3 Centers are perfectly
found by the Clusters.

Tuning gets easier for

more than 5 clusters
(see �gure 3-3 and 3-4

step
function

2000 100 1 49 0,4 3 10�3

sinc 4000 200 0.9 30 3 10�2 6 10�4 see �gure 3-5)

polynomials 1000 200 1.2 21 2 10�3 3 10�2

Table 3.1: Experimental results of the cluster based approximation. The local model is

reduced to a constant mean (
y

j
= �

y

j
).

� Square error. The predicted value is compared to the real value and then averaged

over the whole data set. E2 = 1=N �
P

N

i=1(ẑ � z)2. As the data sets are normalized

on the same range for x; y and z, the error itself is not normalized.

With the values obtained by the cluster based approximation trained by EM, we also

give the number of iterations until convergence and the speci�c value of
 (see equation

3.65). Convergence is assumed, once the average change of any of the model parameters is

smaller than 10�5. See table 3.1 for cluster based approximation without local model and

table 3.2 for cluster based approximation with a local linear model.

For the Polynomial Approximation the value of the regularizing parameter � (see section

3.2) is given with the average error (see table 3.3).

Clearly cluster based modeling is much more
exible than polynomials. Polynomials

behaved well with data drawn from polynomials. In fact the parameters of the Gaussian

distribution were all recovered. Yet, polynomials are unable to explain highly nonlinear

behavior, such as the sinc or the step function.

Cluster models easily discovered and approximated strange behavior in the solution

space. On the other hand many basis terms are needed, to approximate such extreme

behavior. 200 clusters for a sinc function on the range of 2� means quite a bit of resources.

Also, the EM algorithm needs a lot of tuning, until a stable and reasonable solution can be

found. It is sensitive to the initial value of the Cluster Variances, to the number of Clusters

and also to
. Using linear local functions the algorithm did not converge at all for some of

the test functions. Clusters do not �nd stable space positions all over the space, but tend

to converge towards few identical space domains.

It has been mentioned in the beginning of this chapter that there is the alternative of

explicit parameter search as opposed to the EM algorithm. Stability would probably be less

of a problem with such explicit search algorithms. We are considering using such algorithms

for the more complex models we will have to built.

48

−0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=0

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=1

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=3

xy

−0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=5

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=7

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=9

xy

−0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=11

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=13

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=15

xy

−0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=17

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=19

xy −0.5
0

0.5

−0.5

0

0.5

−0.5

0

0.5

n=25

xy

Figure 3-3: EM iterations for data distributed on �ve di�erent means. Clusters are repre-

sented by small circles. The corresponding variances are represented by lines in the space

direction.

49

−2

0

2

−2

0

2
−1

0

1

2

Predictor Function

xy

z(
x,

y)

Figure 3-4: Prediction Surface of the Gaussian data approximated by locally linear models.

With EM all the data centers and the linear slopes in z-direction are recovered.

−1

0

1

−1

0

1
−0.5

0

0.5

1

Sinc Function

xy

z(
x,

y)

−1

0

1

−1

0

1
−0.5

0

0.5

1

Predictor Function

xy

z(
x,

y)

Figure 3-5: (a) data drawn from a sinc function (4000 points) and (b) a cluster based

approximation (400 clusters) of the data.

50

Data Number

of
Points

Number

of
Clusters

 Iterations

until
Convergence

Maximal

Error

Average

Error

Remarks

Uniform
PDF

441 17 1.2 49 0 0

Gaussians 500 10 1.2 22 1:5 10�3 2:6 10�5 The clusters �nd back the
exact parameters of the

Gaussians. There is 5 dif-

ferent type of clusters. For
doubled clusters, usually one

takes over and the others de-

cay to 0.

step

function

no need for local models

sinc algorithm is not stable

polynomials good performance

Table 3.2: Experimental results with a cluster based approximation. A local linear model

is used (
y

j
= aj + bj � x).

Data Number

of

Points

Order Number of

Polynomials

� Average

Error

Remarks

Uniform

PDF

perfectly linear (no challenge)

Gaussians 500 4 15 1 4 10�3 good interpolation

step

function

bad performance

sinc

function

4000 10 66 100000 0.013 very bad performance. Approxi-

mation does not 'detect' the pic

at x; y = 0.

polynomials 1000 3 10 1 0 All the parameters of the origi-

nal polynomials are perfectly re-

covered (see table above).

Table 3.3: Experimental results with the polynomial approximation

51

Chapter 4

Working with the Violin

4.014 Die Grammophonplatte, der musikalische Ge-

danke, die Notenschrift, die Schallwellen, stehen

alle in jener abbildenden internen Beziehung zu

einander, die zwischen Sprache und Welt besteht.

Ihnen allen ist der logische Bau gemeinsam.

(Wie im M�archen die zwei J�unglinge, ihre zwei

Pferde und ihre Lilien. Sie sind alle in gewissem

Sinne Eins.)

L. Wittgenstein, TRACTATUS

In this chapter the experimental work is described which had been done with real world

data. We de�ne various prediction tasks, and use them to test the algorithms proposed in

the last chapter. As the global approach turned out to be computationally too expensive,

given the hardware resources we used so far, we restricted our test to data sets of 1/10 to 30

seconds, depending on the speci�c problem. In the last section of this chapter we propose

some measures that should make an overall model possible, in terms of computation as well

as stability.

See Appendix A for a description of the hardware that has been used to sample violin

data. These devices include the instruments themselves and the special violin bow, designed

to measure bowing data.

4.1 The Input Space

Our choice of input variables has to some extent been conditioned by the available hardware

equipment. However, the sensor data we are going to use for the �nal model should be

very similar to the data we used so far. We used the the bow-position relative to the

strings (x-position), the bow-placement relative to the bridge (y-position) and the bow-

pressure [Appendix A]. From a performer's point of view it is clear that these inputs are not

independent. Any combination does not result in a reasonable reaction of the instrument.

52

0 2 4 6 8 10
0

50

100

150

200

Raw Bowing Data

s

8 bit raw pressure

frog transmitter

end transmitter

0 1 2 3 4 5 6 7 8 9 10
−20

−10

0

10

20

30

40
Bow Placement, Position and Pressure

cm / mm grams

0

200

400

x−position / cm

y−displacement / mm

bow−pressure

Figure 4-1: (a) Raw input data and (b)inferred and calibrated input signals for a 5 seconds

sample going from slow to fast d�etach�e

The basic dependency is the following: An increase of bow velocity @x

@t
implies a decrease

of bow pressure, an increase of the distance bow/bridge y and a decrease of volume. A

decrease of y implies a decrease of @x

@t
, a higher bow pressure and an increasing volume. It

follows that some information given by the three time series overlaps. However, as we know

from chapter 2 state space and input lag-dimensions can be replaced by other observables

of the system. Using inputs which are not completely independent therefore helps save time

lag dimensions.

Yet, there are other degrees of freedom associated with the violin bow that are to be

considered: e.g., the vertical angle between the plane de�ned by bow bar and bow hair

and the strings represents an important control parameter for the player. Although this

angle is not independent from bow pressure and y-position it most probably contains some

information that we have not access to yet. Also the musician controls the angle between

bow and �nger board, in order to change the y-position of the bow. Again, though not

independent from the input series we do measure, we might need additional information

about this particular angle for a more accurate model.

We have not taken into account a change of pitch in our model so far, which might look

53

like the biggest restriction of our model at that point. However, the behavior of the violin at

di�erent pitches could be interpreted as independent. Given that assumption the complete

model becomes a sum of models for each possible pitch or each possible �nger position.

Although we would prefer an integral solution that includes pitch as a space dimension at

the same description level as the other inputs, there are compromise solutions such as a one

pitch/one model solution or a pitch warping approach.

Figure 4-1 shows the three raw input signals of a 10 second sound example and the

extracted time series x(t), y(t) and pressure. The signals are normalized, calibrated and

�ltered by a causal moving-average-�lter. See Appendix A for the calibration relations.

4.2 Prediction in the Steady State

The cluster based prediction model was applied to simple sinusoidal functions and to su-

perpositions of harmonic sine waves (section 3.3). In either of these cases discrete and

closed trajectories in the state-space were obtained. We are now considering an interval

of a violin signal that is short enough such that decay e�ects due to dissipation as well as

energy increase due to the driving forces are neglectable. We embed such a sound piece

in a 5-dimensional lag-space. In one space-dimension the signal itself is presented, in the

four remaining dimensions time-lagged audio signals are represented. The model is built on

1000 to 3000 data points, 200 to 400 clusters and locally constant predictor functions (see

section 3.3). �
y

j
= �

y

j
was in fact the only choice that did not cause stability problems. The

model was built with the EM algorithm. It worked �ne for the electrical as well as for the

acoustical violin.

Figure 4-2 shows the embedded signal in a 3-dimensional state-space. Figure 4-3 shows

some periods of the training signal and the corresponding re-synthesized signal in the same

time scale. The re-synthesis is done with the state vector initialized to zero. The signal

takes some time to settle down on the attractor, but then the signal shape as well as pitch

are preserved perfectly.

The number of clusters necessary depends on the complexity of the particular piece of

sound serving as training data, but it has to be bigger than the number of samples per

period. In our example we have � 50 samples per period (440 Hz, 22050 samples/s) and

200 clusters were used for the density approximation.

As mentioned before there is a trade o� between stability and extrapolation. The cluster

model performs well and stable as only points are predicted which are part of the orbit.

Any 'strange' initial condition is attracted by the orbit immediately. In this sense the

approximated trajectory is working literally like a `state-space-attractor'. On the other

hand the model is not able to extrapolate for input constellations which have not been part

of the training set. For that reason it turned out to be impossible to use the cluster based

model for transitory prediction with input dimensions. The input clears the orbit as shown

in �gure 4-4(b). As opposed to this image see �gure 4-4(a), where no input were used to

embed 4000 sample points. Clearly the latter state space representation cannot be used for

prediction whereas the orbit in �gure 4-4(b) seems to be clear and usable. Unfortunately an

54

−2
−1

0
1

2 −2
−1

0
1

2

−2

−1

0

1

2

Audio Lag Space

x(t)
x(t+tau)

x(
t+

2*
ta

u)

Figure 4-2: Steady state violin signal embedded in the three dimensional lag space (� = 2)

enormous amount of data and clusters is needed to do a reasonable cluster representation

of the input orbit.

4.3 Polynomial Point Prediction

How well does the polynomial approximation technique (section 3.2) with real world data?

We worked with sets of 1000 to 4000 sample points, 6 and 7 dimensional state-spaces and

6th to 8th order polynomials. The regularizer � was varied between 0.01 and 1000. In

general, 5 space dimensions for the audio signal and its time lags were used and one or two

space dimensions for the input signals. The input v(n) is proportional to the bow velocity.

v(n) = x(n)� x(n� k) represents a di�erential expression of the smoothed bow position.

Our concerns about polynomial models are con�rmed. The iterated re-synthesis of the

audio signal decays to zero after few iteration steps during which the system oscillates.

apparently the energy supply provided by one or two inputs is not su�cient to keep the

system on an oscillatory track. On the other hand more than seven space dimensions are

computationally not a�ordable.

However, the function approximation was tested in the point prediction mode, in order

to get an idea of the quality of approximation in general: a set of sample data is considered

that has been embedded in lag space. All the elements of this data vector are stored except

the non-lagged output dimension. We then predict the one output dimension with our

model and compare the predicted values to the recorded output. Obviously we do not

forecast with this procedure, but we gain insight into the quality of our predictor function

55

as well as in perceptional properties of re-synthesized sound.

Figures 4-5 and 4-6 show the results for one particular sound example at two di�erent

time scales. At the time scale of a basis period of the signal, the approximation does not

very well. The reconstructed wave form is not smooth at all and creates artifacts. Yet, it

conserves the basic frequency properties. Globally the reconstructed system looks pretty

well. The model reproduces the original amplitude changes as well as the deviation from

zero-mean. Also the model extrapolates amazingly well at the global time scale. Figure 4-5

indicates the interval of data that has actually been used for training. Although not even

the whole amplitude range is covered by the training data, these never seen states of the

violin have been perfectly reconstructed.

Perceptionally the signal is very close to the original sound. Apparently the local dis-

tortion does not a�ect the overall violin characteristics. This result con�rms the known

fact from research in musical perception: the characteristics of musical instruments are de-

termined by the amplitude of the waveform envelope rather than by the composition of its

frequency spectrum. Certainly the speci�c overtone series has impact on the sound char-

acteristic, especially in quasi stationary regimes. Yet, the real distinction comes from the

instrument's global behavior in the time domain. The main di�erence between a violin and

a piano is the way the player interacts and controls the strings. This interaction is re
ected

by the overall waveform envelope.

The choice to keep the input device violin bow is therefore con�rmed to be right. The

other important result we got from polynomial point predictions concerns the partition of

our resources: In order to obtain the perceptionally best model, we may concentrate our

e�orts on global characteristics rather than small local details of the wave form.

4.4 Prediction of the Envelope

We noticed so far, that the di�erent time scales of the violin signal are di�cult to match

within a single model. The input series are unable to `communicate' the driving energy

to the system and to the output. Given furthermore that the perceptionally predominant

characteristic of the signal is the wave envelope, we consider concentrating on predicting

the waveform envelope separately. An envelope predictor could then be combined with a

wave generator to synthesize a complete signal.

As can be seen from the time domain representation in �gure 4-7, the overall shape

of the violin signal is characterized by a deviation from zero mean, due to a temporarily

constant component of the sound pressure, and by the energy envelope of the sound wave.

We denote by d(t) the deviation from zero mean and by e(t) the energy envelope of the

signal and de�ne these two time series as follows:

d(t) =
1

T

Z
T

t�T
s(�)d� (4.1)

e(t) =
1

T

Z
T

t�T
js(�)� d(�)j2d�

56

where s(t) is the original signal and T is a constant which typically is of the order of the

input sampling period. In the practical implementation these de�nitions were replaced by

the following time discrete extraction rules, which re
ect the same ideas, but are easier to

calculate:

d(nT) = max
s
fs(�)g+min

s
fs(�)g (4.2)

e(nT) = maxfj s(�)� d(nT) jg

where T denotes the sample interval of the input signals and � stands for the time interval

[(n�1)T; nT].

Figures 4-7 shows the original signal, the extracted deviation from zero mean and the

extracted amplitude/energy. In �gure 4-7 also the time synchronous series of bow velocity

and bow pressure are shown. The correlation between the signals to predict and the inputs

is signi�cant, which creates hope for prediction. The envelope e(nT) appears extremely

sharp. It goes approximately to zero whenever bowing direction is changed. This extreme

behavior indicates that a polynomial approximation of the envelope predictor might not be

a very good idea. Indeed the attempts to reconstruct e(nT) = f(v(nT); p(nT)) with the

polynomial model ended with rather poor results. However, the cluster based model dealt

very well with the particular shape of e(nT). For stability reasons we used only time lags

on the input signals. Our 5-dimensional state vector was de�ned as

z(nT) = fe(nT); v(nT); v((n� k)T); p(nT); p((n� k)T))):

Using k=20, we reconstructed the two signals as shown in �gures 4.4. The bow change

edge appears slightly smoothed, but most of the details are detected and reproduced by the

model. The reconstruction of out-of-sample signals of the same bowing type works as �ne.

The two reconstructed signals were then recombined with a steady state violin wave ~s(t)

as synthesized in section 4.2. The reconstruction rule for ŷ(t):

ŷ(t) = ~s(t) � ~e(t) + ~d(t) (4:3)

where ~e(t) and ~d(t) are �ltered and re-sampled (audio sample rate) versions of e(nT) and

d(nT) (�gure 4.4). As expected ŷ(t) perceptionally is clearly identi�ed as a violin although

the local waveform is maintained the same over the whole 5s sample. The reconstructed

sound sounds 'cleaner' than the original. It is, e.g., missing the attack noise which is, though

noise, an important part of the characteristics and the beauty of the violin tone. We hope to

recover these characteristics of the local spectrum by di�erentiating between local experts.

4.5 Results, Problems and Potential Solutions

The experiments con�rmed most of the preliminary assumptions and model priors. Most

important, it has been shown empirically in the point prediction mode that the single

valued prediction surface, foreseen by the embedding theorem exists. It has furthermore

57

been shown that cluster based iterated prediction models satisfy high stability criteria. Also

it became clear that details of the violin waveform are perceptionally less important than

the envelope behavior.

The experiments also clari�ed some problematic issues which imply a correction of the

original approach: Although the embedded function exists, it seems to be computationally

impossible to approximate it in a global state space. The measures proposed in the following

will be part of the �nal model as developed in chapter 5.

4.5.1 Multi-Scale Space Splitting

There are obviously di�erent time scales associated with the device violin. The waveform

itself has a typical scaling at the audio sampling rate. The smallest perceptional resolution

of a played note lies in the 10 ms domain. Other time scales can be identi�ed, such as the

scaling of a musical phrase or the formal structure of a movement. We are not interested in

the latter elements, because they represent intentional supersets of smaller elements, which

are intrinsic to the physics or control possibilities of the instrument. Yet, the distinction

between the control and forming of a tone and the actual waveform could be very helpful

for prediction and modeling.

Given the speci�c boundary conditions, work at di�erent time scales seems to be even

more appropriate, as we dispose already of two di�erent sampling periods. The signals

describe either the input observables or the audio signal. We recall that input/output em-

bedding requires the input and the output signals to behave homogeneously. Homogeneous

is not clearly de�ned, but we noticed that the physical `communication' between input and

output in our model was rather poor. We therefore might try to �nd some intermediate

state space that selects and conditions lower order state spaces. For the data set to be-

come computable we consider hard decisions, either in form of input partitioning (see next

section) with hierarchical approximation techniques or in form of hierarchical spaces.

In terms of space hierarchy we propose a general framework as sketched in �gure 4.5.1.

The expert system comes close to the framework of gated experts [WMS95] and of hier-

archical experts [JJ93]. Yet, there is some signi�cant di�erence. Both of the cited model

architectures are basically unsupervised learning approaches for prediction problems, that

let the network partition the space autonomously. Partitioning is mainly done in the input

space. No a priori meaning is associated with di�erent experts. As opposed to this un-

supervised approach to expert learning we believe that there are meaningful global states

that characterize the system at the input scaling and that condition the subsystem which

is working at the audio sample rate.

Let's denote:

Tlt: long term sampling period.

Tst: short term sampling period.

~xlt(l): Input vector (including time lags of the of the long term expert and of the �nal

system's output).

58

~wsel

st
(l): Internal vector characterizing meaningful long term behavior.

~win

st
(m): Input vector of the short term experts.

Q: total number of short term experts.

E
q

st
: short term expert q.

yi: output of expert E
q

st
.

~wsel

lt
(l) and ~win

lt
(l) represent vectors of meaningful system characteristics, e.g. the energy

level of the system. ~wsel

lt
and ~win

lt
are predicted given the input ~xlt(l). Iterative prediction

is possible but should be avoided for stability reasons. Based on the state vector ~wsel

lt
(l) a

local expert E
q

st
is chosen that works at a faster sampling period. The expert E

q

st
predicts

the output y. The input of E
q

st
~win

st
(m) consists of time lags of y, the global input ~xlt(l)

and the interior states ~win

lt
(l). The elements of ~win

lt
(l) may di�er from those of ~win

lt
(l).

All interactions between the network agents are described within a soft probability model,

which can easily be reduced to a hard decision version. Although we have a cluster based

estimate in mind, the model works with any probabilistic estimate. The overall probability

we are interested in is p(y(m) j x
st
)

p(y(m) j xst) =

QX
q=1

p(E
q

st
j xlt) � p(yijxlt) (4.4)

=

QX
q=1

p(E
q

st
j wsel

lt
) � p(wsel

lt
j x

lt
) � p(yi j w

in

lt
) � p(win

lt
j x

lt
)

(4.5)

For prediction we would exploit p(y(m) j x
st
) in terms of maximization or in terms of the

expected value. Obviously p(y(m) j x
st
) is calculated as a sum over a chain of conditional

probability densities, where each PDF depends on the previous model unit only. We noted

x and w as matrices, in order to indicate that theoretically any past value of ~x(l) and ~w(l)

could be taken in account. Concretely each conditional PDF is based on a time-lagged-

structure.

How can the system be trained? Clearly we are still looking for a maximum likelihood

approximation of the data. A general learning algorithm in form of the EM algorithm or

in form of explicit parameter search could be de�ned, but becomes almost impossible to

understand without a concrete application (see [JJ93]. We therefore prefer to present a

learning framework once a speci�c model architecture is de�ned (chapter 5).

4.5.2 Hierarchical Cluster Structures

As has been seen, our learning algorithms su�ered from the fact, that all the training

points and all the basis functions were related. Compared to the M � N proportionality

of the proposed algorithms other parameters such as dimensionality and iterations have

59

relatively little e�ect on the computing time. More precisely the following computational

cost proportionalities were found:

Approx.Technique/Learning Algorithm cost proportionality

Polynomial Model M2
�N �D

Clustering by Melting M �N �D � nI � n�

EM (no local model) M �N �D � nI

EM (local model) M �N �D �K2
l

with the Number of basis functions (clusters) M , the number of data points N , the

dimension D, the number of iterations nI (n�) and the number of local basis functions

Kl. For which ever model is used, these dependencies have to be reduced for the violin

application, with regard to learning as well as to synthesis.

A commonly used method to organize huge data sets for classi�cation and search are

binary-trees. We do not review tree structures, but assume that the reader is familiar

with their principle structure. Common trees do not �t very well our soft data structure.

Yet, we consider hierarchical cluster trees with arbitrarily soft boundaries. In the original

approach all clusters interact with all points. However, due to the Gaussian structure

characterizing the domain of in
uence, some points do not matter at all for `far away'

clusters. Unfortunately we have no idea which points are `far away', as long as we haven't

calculated their distance or the probability of being associated with a cluster. In order to

escape from this dilemma, the following tree oriented cluster architecture is proposed. We

denote:

m : Number of Clusters per node.

1 + � : relative number of points per layer with respect to the total number of points N.

N : Total number of points.

M : Total number of clusters at the lowest tree level.

�i;j : Probability of data point i being generated by cluster j.

The tree architecture is built up according to the following steps. For the clustering

steps any cluster algorithm may be used.

1. n = 0

2. Cluster the data set with m clusters until convergence.

3. Evaluate the �i;j and assign each point to the cluster j that maximizes �i;j . Assign

those points to a second cluster j that share the next highest ��
i;j

with j�, such that

the number of points assigned becomes (1 + �)N .

4. Store the clusters and their subsets of assigned points.

60

5. n = n+ 1.

6. If the total number of points per cluster is too big go to 1. and do 1. for all m subsets

of points.

The algorithm is meant to be recursive. Any subset of points serves as root for m new

branches of the tree. It stops as soon as the cardinality of the point subsets becomes small

enough, or as soon as the total number of clusters in the last layer of the tree corresponds

to the desired number of clusters to describe the �ne structure of the data set. Therefore

the architecture assures the same �ne resolution of description as non hierarchical clusters.

Although we do have hard assignments between points and clusters, clusters overlap softly.

The degree of softness is tuned by �. A high � results in slower convergence speed, but let

subspaces of points and clusters overlap better.

The computation cost for the EM based search now becomes proportional to

Cost (hierarchical EM) / N �D � [1 + (1 + �) + (1 + �)2 + :::(1+ �)L] � n (4.6)

� N �D � n
_(1 + �)L+1

�

where L = logM
logm .

Let's consider a data set of a million sample points, which corresponds to 30s audio

signal. Furthermore 105 clusters are assumed to describe the lowest hierarchy level, which

is realistically needed for a reasonable approximation. If we choose m = 5 and � = 0:1 our

gain becomes

Cost (ordinary EM)

Cost (hyrarchical EM)
=

M

m

�

(1 + �)
logM

logm
+1

' 1000

The computational gain applies for the synthesis situation as well. The expert for an

input constellation is found by jumping from node to node where at each node only a few

probabilities are to be calculated. As it is our �nal goal to built an on-line violin, this

feature will be most important.

If one is looking for a philosophical justi�cation of hierarchical cluster trees, he/she

may consider nature as making many successive (binary) decisions. Just as the algorithm

is �nding its way through the tree, nature decides which path to take at a number of

alternatives that is still understandable. Even though this view might not quite correspond

to reality, it helps to understand complex decision systems.

4.5.3 On-line Learning

It has been pointed out that it is necessary to break the cluster/point interaction, such that

our overall model becomes computable. We proposed a hierarchical structure, that reduced

the computational proportionality roughly by M= logM .

61

A further improvement could be achieved by incremental learning or on-line learning.

The principle idea is expressed by the following question: Given an optimal model with

respect to a data set I, how do parameters have to be updated when a new data set -data

set II- is considered? In other words, which is the optimal model with respect to a �rst data

set, that had been used for initializing the model and then was thrown away, and a second

data set which is considered later.

The concept that jumps to mind is the Kalman Filter. A Kalman Filter updates model

parameters with respect to the old model, to the new data and to a predicted value (predic-

tion error). However, there are a couple of problems associated with the implementation of

such a �lter. It requires very precise ideas of how the model has to look like and which task

each model parameter is supposed to ful�ll. Its implementation for fully non-linear models

with complex architecture and unsupervised parameter allocation is certainly tricky, if not

impossible or unstable.

We therefore propose an update algorithm that is very much oriented at the EM frame-

work and could in fact be named on-line-EM. It does not take into account the prediction

error of the old model, but simply acts as if it had the old data and the new data available

for the update.

Assume that a set of data g1 has been exploited to train a cluster based probability

estimate via the EM algorithm. Once more 	
y

j
= �

y

j
for clarity. The model M1 has been

iterated until convergence into a least square minimum and then data set g1 was thrown

away. We keep the number of clusters M constant through the model change. Model M1

is to be updated given a data set g2, generated by the same system. Further notations are

needed to describe the update:

i: Index associated with the new points.

j1: Index associated with the old clusters.

j2: Index associated with the new clusters.

�1: Parameter set of modelM1, initialized with data set g1. �1 includes M mean vectors

~�z
j1
, as many variances ~�2

j1
and M weights !j1 .

�2: Parameter set of model M2, updated with data set g2. �2 includes M mean vectors

~�z
j2
, as many variances ~�2

j2
and M weights !j2 .

C1: Cardinality of g1 (= N1).

C2: Cardinality of g2 (= N2).

M2 is �rst initialized with M1
1. Then the following update-rules forM2 are applied:

1Conceivably M2 could be initialized arbitrarily. However, the proposed solution seems to be more

e�cient, especially as we assume C2 < C1 and as we assumeM2 not very di�erent fromM1.

62

E-step: We need to de�ne the mutual probabilistic dependences between the new points

and the new clusters, and between the old clusters and the new clusters.

pi;j2 = !j2 � �
z

j2
(zi) (4.7)

= !j2�
y

j2
(yijxi) � �

x

j2
(xi)

pj1;j2 = � � !j2 �
C1

C2
�M1 � !j1 � �

z

j2
(~�z

j1
)

= � � !j2 �
C1

C2
M1 � !j1 � �

y

j2
(~�

y

j1
j~�z
j1
) � �x

j2
(~�x

j1
)

� (4.8)

where the �'s have been de�ned in equation 3.17 and 3.20 and � � 1. The corre-

sponding �s follow directly:

�i;j2 =
pi;j2P

M

j2=1 pi;j2 + pj1;j2
(4.9)

�j1;j2 =
pj1;j2P

M

j2=1 pi;j2 + pj1;j2

M-step: The M-step is pretty straightforward as well:

!j2 =

P
N2

i=1 �i;j2 +
P

M

j1=1 �j1;j2P
M

j2=1(
P

N2

i=1 �i;j2 +
P

M

j1=1 �i;j2)
(4.10)

~�z
j2

=

P
N2

i=1 zi�i;j2 +
P

M

j1=1 ~�
z

j1
�j1;j2P

N2

i=1 �i;j2 +
P

M

j1=1 �j1;j2

~�z
j2

=

P
N2

i=1(~�
z

i
� zi)

2�i;j2 +
P

M

j1=1 ~�
z

j1
�i;j2P

N2

i=1 �i;j2 +
P

M

j1=1 �j1;j2

Note that there is a slight inconsistency concerning the update of ~�z
j2
. In fact not all he

information given by the data set is conserved in the clusters. Therefore problems with

algorithm steps occur, which result in some compromises. The errors associated with these

compromises are kept small under the condition C1 � C2. � denotes a decay parameter

that reduces the weight of the old data at each E-step. Therefore new data is always taken

a little bit more serious than data that has been used some time ago. This also means that

the model can change or adopt with time. The role of � within the Bayesian framework

has been pointed out above (chapter 3.1). E- and M-step are repeated until convergence.

It might be possible to add new data sets, before a model has completely been converged.

The update rules for hierarchical clusters would obviously be more complex, but there is

an analytical solution as well. See [JJ93] for the general case.

63

0 50 100 150 200 250 300 350 400
−6000

−4000

−2000

0

2000

4000
x(nT)

nT

0 50 100 150 200 250 300 350 400
−6000

−4000

−2000

0

2000

4000

nT

y(nT)

Figure 4-3: Steady state violin signal (400 samples). (a) original and (b) re-synthesized.

64

−1000
−500

0
500

1000

−1000

−500

0

500
−1000

−500

0

500

1000

1500

Audio Lag Space

x(t)x(t+tau)

x(
t+

2*
ta

u)

−1000
−500

0
500

1000

−1000

−500

0

500
120

130

140

150

160

170

Audio Lag Space

x(t)x(t+tau)

i(t
)

Figure 4-4: (a) Violin audio signal embedded in a three dimensional time-lag space,(b)violin

audio signal (x and y axes) and x-position (z axis).

65

0 1 2 3 4 5 6 7 8 9 10
−2000

−1000

0

1000

2000

3000
x(nT)

nT

0 50 100 150 200 250 300 350 400
−1000

0

1000

2000

x(nT)

nT

Figure 4-5: Training signal for the point prediction mode (10 seconds). The training was

done on sample 2000-5000, which corresponds to the interval [0.2,1] of plot(a).

0 1 2 3 4 5 6 7 8 9 10
−2000

−1000

0

1000

2000

3000

nT

x(nT)

0 50 100 150 200 250 300 350 400
−1000

0

1000

2000

nT

x(nT)

Figure 4-6: Prediction of the input/output signal in the point prediction mode.

66

0 100 200 300 400 500 600
−1000

0

1000

2000

nT

Pressure p(nT)

Velocity v(nT)

0 100 200 300 400 500 600

−5000

0

5000

10000

Deviation d(nT)

Envelope e(nT)

nT

0 1 2 3 4 5 6 7 8 9 10

−1

−0.5

0

0.5

1

x 104

x(nT)

nT

Figure 4-7: sample (6 seconds) of d�etach�e bowing. Input series (a). Extracted envelope e(t)

and deviation d(t) (b). Full signal (c).

0 100 200 300 400 500 600

−5000

0

5000

10000

nT

Predicted d(nT)

Predicted e(nT)

1 2 3 4 5 6 7 8 9 10
−2

−1

0

1

2
x 104

nT

x(nT)

Figure 4-8: Re-synthesized envelope and deviation (a). Re-combination with an arbitrary

steady state signal (b).

67

�

-

- �

?

?

?

?

?

?

?

?

Elt

E1
st

E2
st E

Q

st

m m m

m

� � �

+

~xlt

~wsel

lt

~win

lt

ŷ1 ŷ2 ŷQ

ŷ(m)

.....

.....

Figure 4-9: System of hierarchical experts for multi-time-scale prediction.

68

Chapter 5

Toward a Final Model

5.556 Eine Hierarchie der Formen der Elementars�atze

kann es nicht geben. Nur was wir selbst konstru-

ieren, k�onnen wir vorraussehen.

5.5561 Die empirische Realit�at ist begrenzt durch die

Gesamtheit der Gegenst�ande. Die Grenze zeigt sich

wieder in der Gesamtheit der Elementars�atze.

Die Hierarchien sind und m�ussen unabh�angig von

der Reali�at sein.

L. Wittgenstein, TRACTATUS

5.1 The Architecture

Based on the experimental results and the potential architectural improvements discussed

in the last chapter we propose a two-scale two-expert predictor model of the violin:

The long-term predictor (expert Elt) reconstructs the amplitude envelope and the devi-

ation from zero mean of the violin signal. The long term expert is also in charge of selecting

the most appropriate short term predictor, given a particular state of the violin and a par-

ticular input. The short term predictor (expert Est) synthesizes the most likely normalized

wave form. The amplitude modulation of the output of the two experts results in the �nal

audio signal.

Both experts are implemented as cluster weighted estimators. They are distinct, but do

interact especially during the learning process. The predicted audio signal can be expressed

as a product of conditional probabilities.

Figure 5.1 indicates the overall architecture. The model is running at two di�erent

sampling periods. The long-term sample period Tlt is determined by the sampling of the

input ~il. We de�ne ~il = ~i(lTlt), where ~i(lTlt) contains bowing data and information about

pitch. Associated with Tlt is the long term behavior el, dl and the long term expert Elt.

The short term sampling period Tst is equal to the audio sampling period. It is associated

with the predicted wave form sm and the audio signal ym, de�ned as sm = s(mTst) and

ym = y(mTst).

69

The Long Term Expert

Expert Elt works at Tlt. It ful�lls two basic tasks: It predicts the signal's long-term am-

plitude envelope el and its deviation from zero mean dl
1. The prediction concept has been

proposed and discussed in section 4.4. The long term prediction space may or may not

contain time lags of the output, depending on how stable the predictor behaves.

Secondly Elt has a discrete classi�cation task. It decides which short term expert Est

best �ts the global state of the violin. Classi�cation has not been formally introduced in

this paper. So far we used cluster based models for the prediction of a continuous variable

y. When y is chosen from a discrete and �nite set of Q elements, the problem becomes a

classi�cation problem. The model is supposed to �nd the most likely element out of the Q

possible elements for y. The original density space is replaced by Q discrete density spaces.

Let's denote p(E
q

st
jxl) the probability that short term expert E

q

st
is responsible for the

wave generation given a certain long term state x(l). This probability is proportional to the

value of the PDF associated with expert E
q

st
. Each of the associated PDF's is approximated

by weighted superpositions of Gaussian basis functions. We de�ne the expert PDF

pq(x) =

MqX
j=1

!
q

j
� �

xq

j
(x) (5:1)

with

�
xq

j
(x) =

1q
(2�)DjPjj

� e�
1

2
(x�~�j)

T
P
�1

j
(x�~�j):

We then obtain

p(E
q

st
jxl) =

pq(xl)PQ

q=1 pq(xl)
(5:2)

as the overall probability of expert E
q

st
being in charge of the wave prediction. Elt has to

maximize equation 5.2 with respect to q and selects the corresponding E
q

st
. The two decision

spaces handled by expert Elt are either completely separate or they share the input vector

~x.

The Short Term Expert

The selected short term expert E
q

st
works as an autonomous predictor at the sampling period

Tst. As has been shown in section 4.2, stable iterated prediction is very well possible with

clear trajectories in space. We choose such a autonomous system to predict a normalized

signal sm = s(mTst). The E
q

st
are trained on normalized signal pieces, for constant ampli-

tude assures that short term models can be summarized independently from their energy

level. We hope to allocate resources more e�ciently this way.

Out of Elt comes the predicted amplitude el and the predicted deviation dl. Both series

are sampled at Tlt. In order to �t with the short term signal they have to be re-sampled at

1dl might perceptionally not be important enough to spend resources on this detail. Further perceptional

test will be made on that question.

70

Long-Term-Predictor

Selector

Est

Resampler- -

-

?

6

?

-�

��
� ŷ(m)

~x(l)
e(m)

d(m)

s(m)

e(l)

d(l)

Figure 5-1: Model architecture for a multi-time-scale audio predictor

Tst and �ltered. Eventually a slight time delay between input and output will be built into

the system, which would allow a non causal �lter. Finally the three time series sm, dm and

em are recombined according to the simple rule:

ŷm = sm � em + dm (5:3)

ŷ is now supposed to be equal to the original output.

Any one cluster model in this expert system is realized as a hierarchical cluster tree, as

proposed in section 4.5.2. So learning and on-line synthesis become feasible.

5.2 Learning

We propose a learning algorithm close to the actual implementation. The learning is done

incrementally (see section 4.5.3). We �rst initialize the model with a reasonable amount of

data and then add successively new pieces of signal to the model. The learning algorithm

for the envelope expert is independent from the classi�cation and the short term expert. It

is done as described in section 4.4. The classi�cation expert and the short term predictors

do interact during the learning process.

One more important de�nition is needed. In the last section the likelihood has been

de�ned, that expert E
q

st
is in charge of prediction given a certain long term state xl. For the

training we need to de�ne the conditional probability p(E
q

st
j gst) of a piece of training signal

being generated by an expert E
q

st
, where gst denotes the set of signal points represented

in lag space, of the piece of signal in issue. Fortunately we dispose already of a density

approximation of the expert space q, and by now we are familiar with the two steps that

lead to a conditional probability distribution. As we are dealing with a set of sample points

71

we need to de�ne a product of probability distributions:

p(E
q

st
j gst) /

Y
~z2gst

pz(E
q

st
jz) (5.4)

=
Y
~z2gst

pq
z
(z)

where pq
z
(~z) denotes the short term PDF associated with short term expert E

q

st
. For the

�nal distribution we obtain

p(E
q

st
j gst) =

Q
z2gst

pq
z
(z)P

Q

q=1

Q
z2gst p

q

z(z)
(5:5)

We propose the algorithm, split into initialization and the on-line update rules. Note

that the initialization step by itself is an iterated EM procedure.

Initialization:

1. Take a set of audio samples and the corresponding input samples. Extract the envelope

information from the signal, normalize it and cut it into Q pieces.2

2. Initialize the envelope predictor. Build a lag space with the whole set of inputs and

run a parameter search algorithm with a �xed number of basis functions.

3. Built Q autonomous short term predictors with the Q subsets of normalized audio

points.

4. Initialize the classi�cation expert by assigning a di�erent classi�cation PDF in xlt to

each of the experts E
q

st
. Each point in the envelope predictor space is associated with

the corresponding E
q

st
. The ensemble of points xlt that belongs to the same short

term expert is estimated in a cluster based classi�cation PDF pq(xlt).

On line update:

1. Take the next input sample knew and the corresponding set of audio samples gnew.

Extract the envelope information and normalize gnew .

2. Update the envelope expert Elt with the new sample k according to the rules from

section 4.5.3.

3. Find the E
q
�

st
that maximizes p(Est

q
j gnew). Ad gnew to the lag space that de�nes

E
q
�

st
and update E

q
�

st
according to the update rules de�ned in section 4.5.3.

4. Update the classi�cation PDF pq�associated with expert E
q
�

st
according to section

4.5.3.

2Clearly the set of data used for initialization has to be reasonable big. Concretely it should be at least

bigger than Tlt�Q

Tst
.

72

5. Go to 1.

Most of the update rules have been explained in section 4.5.3. One detail is to be added:

We cannot hope to do a very good job by initializing the di�erent experts with random data.

Therefore a decay parameter � is introduced that lowers the relative weight of the old data

at every update step. The mechanisms behind this concept has been explained in sections

3.1 and 4.5.3.

For the same reason the whole available data set may be passed through the algorithm

several times. We cannot expect the algorithm to converge into the optimal solution at the

�rst run, unless the data is itself repetitive. Any further run through should result in an

improvement of the model in terms of maximizing the model likelihood, as well as in terms

of perception.

We have not formally proved global convergence of the proposed architecture and the

associated learning concept. However, convergence has been investigated in related contexts.

In fact, our model could be interpreted as a special candidate of mixture experts, the

convergence of which in fact has been proved [JJ93].

73

Chapter 6

Conclusion

6.5 Zu einer Antwort, die man nicht aussprechen kann,

kann man auch die Frage nicht aussprechen.

Das R�atsel gibt es nicht.

Wenn sich eine Frage �uberhaupt stellen l�a�t, so kann

sie auch beantwortet werden.

L. Wittgenstein, TRACTATUS1

It is the goal of this paper to give an overview over modeling techniques, model architec-

tures and search algorithms to eventually build a complete synthesis system, which might

deserve the title `The Digital Stradivarius'. In fact the pieces described in this thesis need

to be put together, in order to get a prototype for an input/output sound generator. A

working synthesis system is now a matter of implementation and further tuning of model

parameters.

In chapter 2 the theory of state-space reconstruction for unknown multidimensional in-

put/output systems has been reviewed and related to the speci�c goal of musical synthesis.

In the next chapter function approximation techniques and parameter search techniques

were proposed. In particular cluster weighted local modeling was presented in a new for-

malism which includes the information about the global clusters and the local functions in

1

1.1 The world is the totality of facts, not of things.

1.12 For the totality of facts determines both what is the case, and also all that is not the case.

2.0123 If I know an object, then I also know all the possibilities of its occurrences in atomic facts. (Every
such possibility must lie in the nature of the object.) A new possibility cannot subsequently be found.

2.01231 In order to know an object, I must know not its external but all its internal qualities.

3.032 To present in language anything which \contradicts logic\ is as impossible as in geometry to present

by its co-ordinates a �gure which contradicts the laws of space; or to give the co-ordinates of a point
which does not exist.

3.01231 We could present spatially an atomic fact which contradicted the laws of physics, but not one
which contradicted the laws of geometry.

74

a single probability density estimate. The EM algorithm was then extended to a parameter

search algorithm for local polynomials.

It has been shown in chapter 4 that the reconstruction of the violin's state space in time

lag space indeed leads to a single valued function, as foreseen by the embedding theorem.

In the stationary case we obtained clear orbits that were successfully used for stable cluster

based prediction. In this mode the system gets confused only if damping e�ects in the

training signal become to strong. At the time scale of the waveform envelope the correlation

between the bowing data and the energy output became obvious. We used this feature for

e�cient prediction of the global signal behavior at a sampling rate in the millisecond range.

The overall input/output state-space was reconstructed with polynomial basis functions.

Although perfect extrapolation was achieved in the point-prediction mode, stable iterated

prediction turned out to be impossible.

Finally hierarchical model structures have been proposed, that either split spaces into

di�erent input spaces or de�ne prediction tasks at di�erent time scales. In fact `repartition

of labor' in terms of predicting experts comes out of this paper as the main maxim for

prediction. The principle of repartition applies at multiple levels. E�cient prediction

needs division of global spaces into subspaces, hierarchical models within spaces and input

domains, and multi-time-scale representations. The model proposed in chapter 5 represents

a �rst attempt to integrate these features with respect to musical synthesis.

What remains to be done? Eventually, completely di�erent function approximation

techniques should be tested as well. We did not work with neural network architectures so

far, for the transparency of cluster based models seemed to be too appealing as opposed to

the hidden functionalism of neural nets. However, we might have to make use of the latter's

compact description and prediction power, when a �nal on-line model is to be built. Also

further research needs to be done on e�cient parameter search algorithms. The stability

problems that occured with the EM-algorithm could possibly be overcome by explicit search

algorithms.

The goal of re-synthesis based on state-space reconstruction hangs in between physics

and engineering. We are primarily interested in the phenomenological reconstruction of a

physical system. We then use this information for the engineering like simulation and control

of a system that is supposed to synthesize sound, indistinguishable from the original. Clearly

4.014 The gramophon record, the musical thought, the score, the waves of sound, all stand to one another

in that pictorial internal relation, which holds between language and the world. To all of them the

logical structure is common. (Like the two youths, their two horses and their lilies in the story. They

are all in a certain sense one.)

5.5561 Empirical reality is limited by the totality of objects. The boundary appears again in the totality

of elementary propositions. The hierarchies are and must be independent of reality.

6.5 For an answer which cannot be expressed the question too cannot be expressed. The riddle does not

exist. If a question can be put at all, then it can also be answered.

Ludwig Wittgenstein. Tractatus Logico-Philosophicus

75

control theory from an engineering point of view, historically mostly linear control theory,

and state-space-reconstruction based on time lags are very much related, as the feedback

structure of states is at the heard of the two approaches. However, we might have to gain

a clearer idea how results from the two domains can be combined for nonlinear control.

Eventually intelligent combinations of linear and nonlinear techniques might be realized,

such as a linear feedback together with a nonlinear prediction function.

Along with the physical and mathematical improvements more perceptional research

should be done. Not all the signal features have the same importance for perceptionally

good re-synthesis. The relevant features need to be identi�ed in a more systematic way.

This is where our approach to musical synthesis meets other research areas, e.g. audio

compression.

Looking back to the very �rst sentence of this paper, we agree with the violin maker, that

many questions arise when the violin becomes subject of discussion and research. However,

we believe that some answers have been found working on this thesis and Wittgenstein (see

quote) con�rms our optimism that extraordinary synthesis will be possible soon.

This paper is to be �nished with only a few remarks on the aesthetic implications of

the `Digital Stradivarius'. We will not replace the violin, but create for it a digital brother,

which shares features, such as the basic control space and output behavior. Given the direct

access to the input as well as to the output, the control space of the violin player can be

enlarged and transformed in many directions. The violin may sound like a cello or it may

trigger pre-sampled or synthesized music by decision rules based on the control data. Any

such measure will enlarge the creation space accessible by composer and player. The digital

violin is no longer image, but becomes an instrument on its own. It de�nes a new world of

aesthetic experience both from a player's and an audience point of view.

76

Appendix A

Violin and Bow Hardware

The violin bow which we used for data sampling was developed by Joe Paradiso and Neil

Gershenfeld [PG96]. Originally it served in a performance project with violinist Ani Ke-

va�an and the St. Paul Chamber Orchestra in 1993. The Paradiso bow behaves like

an ordinary violin bow, apart from a slightly increased weight. It is loaded with sensors

that sensor the bow position (the lateral position of the bow relative to the strings), the

bow/bridge distance and the �nger pressure. In the original music project this sensor data

was used to translate the players action into computed sounds, either triggering presampled

sound �les or adjusting parameters of on-line synthesizers. The violin has been mutated into

a hyperinstrument as its musical spectrum was enlarged compared to its traditional possi-

bilities. Besides these artistic aspects the violin bow became very helpful for our scienti�c

tasks .

We shortly describe the principle bow architecture (see �gure A): A resistive strip

is attached to the bow over the hole length of the pole. At its ends at frog and tip it

is connected to battery powered low power oscillators, working at constant amplitudes

and frequencies of 50 and 100 kHz. The resistive strip serves as antenna and as voltage

divider. The two signals are received by an antenna mounted close to the violin bridge. The

strength of signals is therefore roughly proportional to the distance bridge/frog respectively

the distance bridge/tip.

Figure A shows the principle hardware components. The received signal �rst passes a

FET-source-follower, placed on the violin. It is then transmitted through a shielded cable

to the `ground-station' containing the signal processing electronics, where it is �ltered by

second order band-passes of 50 and 100 kHz mid-frequencies. Finally envelope followers

detect the amplitude of each of the two broadcasted frequencies VL and VR (see �gure A).

It has been shown by Gershenfeld and Paradiso [PG96], that the x-position of the bow

is approximately proportional to (VL�VR). Moreover the distance bridge/bow goes linearly

with the inverse sum of the signal 1=(VL�VR). Therefore we de�ne the following variables

The violin bow is a sort of prototype for the upcoming project with Kronos-Quartet in Summer 1997,
although more research is going to be done on the sensor technology. In fact we would like to replace the

battery powered electric �eld oscillators by passive tags that work either as electric or as magnetic resonators.

77

as two of the potential input variables.

x(t) = �x �
(VL � VR)

(VL + VR)
+ �x (A.1)

y(t) = �y �
1

(VL + VR)
+ �y (A.2)

(A.3)

where � and � are linear normalization factors.

Furthermore a piezoresistive strip placed on the bow between index �nger and pole

changes its resistance with �nger pressure and makes the corresponding low-impedance

voltage cause a frequency change for a third oscillator. This additional oscillator was

mounted on the bow, running at 25 kHz and transmitting through an antenna covering

the full bow length. The `ground-station' �lters the signal, detects the frequency change in

a phase-locked-loop and recovers the original pressure change.

The raw analog signals are converted into 8-bit samples by a HC11 A/D-converter,

which was connected to the PC serial port. The sample rate for the input data was 125

Hz, which allows to cover almost all possible human motorics. Eventually the sampling

rate will be reduced to 2 samples/ms. 1000 Hz seems to be the upper most resolution of

human motion. Given that the control of a musical instrument requires as much sensibility

as possible we would like to cover any detail of the 1kHz control motion.

Simultaneously with the bowing data we recorded the audio signal of the violin at either

22050 or 44100 Hz. The acoustic violin (German, � 1900) is recorded by a microphone

driven by a preampli�er which is connected to the PC sound card. The electrical violin we

used was built by Richard Armin in Toronto. It uses piezoelectric polymer pickups to sense

the vibration of the violin top plate. The picked up signal is directly connected to the PC

sound device. In fact very little direct sound is radiated. The electrical violin can clearly

be identi�ed as an instrument of the violin family, although it does not provide the richness

of sound and the control variety as the acoustical violin does. As there is no intermediate

noise source between the vibrating violin corpus and the recording system, the �nal noise

level of the electrical violin is much smaller than that of the acoustical recording. This

feature was very useful for some of our experiments.

78

79

Bibliography

[ABST93] Henry D.I. Abarnel, Reggie Brown, John J. Sidorowich, and Lev Sh. Tsimring.

The analysis of observed chaotic data in physical systems. Reviews of Modern

Physics, 65(4):1331{1392, 1993.

[BPV84] Pierre Berge, Yves Pomeau, and Christian Vidal. L'ordre dans le chaos. Vers

une approche deterministe de la turbulence. Hermann, Paris, 1984.

[Buc73] Alexander Buchner. Geigenverbesserer. Das Musikinstrument, Frankfurt/Main,

1973.

[Cas92] Martin Casdagli. A dynamical approach to modeling input-output systems. In

Nonlinear Modeling and Forecasting. Addison-Wesley, 1992.

[CJE+] Martin Casdagli, Deirdre Jardins, Stephen Eubank, J.Doyne Farmer, John Gib-

son, Norman Hunter, and James Theiler. Nonlinear modeling of chaotic time

series: Theroy and application.

[DES94] F.R. Drepper, R. Engbert, and N. Stollenwerk. Nonlinear time series analysis of

empirical population dynamics. Ecological Modelling, 1994. to appear.

[DLR77] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm (with discussion). Journal of the Royal Statistical

Society B, 39:1{38, 1977.

[Eck85] J.-P. Eckmann. Ergodic theory of chaos and strange attractors.Review of Modern

Physics, 57(3 Part I):617{656, 1985.

[fW93] Yiu fai Wong. Clustering data by melting. Neural Computation, 5:89{104, 1993.

[fWP] Yiu fai Wong and Edward C. Posner. A new clustering algorithm applicable tp

multispectral and polarimetric sar images. IEEE Transactions on Geoscience

and Remote Sensing.

[Ger88] Neil Gershenfeld. An experimentalist's introduction to the observation of dy-

namical systems. In Directions in Chaos, volume II. 1988.

[Ger93] Neil Gershenfeld. Information in dynamics. In Doug Matzke, editor, Proceedings

of the Workshop on Physics of Computation, Dallas, Texas, 1993. IEEE Press.

80

[Ger96] Neil A. Gershenfeld. Nonlinear inference and cluster-weighted modeling. In

Proceedings of the 1995 Florida Workshop on Nonlinear Astronomy, 1996. to

appear.

[Ger97a] Neil Gershenfeld. The Nature of Mathematical Modeling. Cambridge Press, 1997.

to appear.

[Ger97b] Neil Gershenfeld. The Physics of Information Technology. Cambridge Press,

1997. to appear.

[Gib88] V. Gibiat. Phase space representations of accoustical musical signals. Journal

of Sound and Vibration, 123(3):529{536, 1988.

[GJP95] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization thory and

neural networks architectures. Neural Computation, 7, 1995.

[GW93] Neil A. Gershenfeld and Andreas S. Weigend. The future of time series. In A.S.

Wiegend and N.A. Gershenfeld, editors, Time Series Prediction: Forecasting the

Future and Understanding the Past. 1993.

[HBTS94] Hanspeter Herzel, David Bery, Ingo Titze, and Marwa Saleh. Analysis of vocal

disorders with methods from nonlinear dynamics. Journal of Speech and Hearing

Research, 37:1{37, 1994.

[Hun92] Norman F. Hunter. Application of nonlinear time-series models to driven sys-

tems. In M. Casdagli and S. Eubank, editors, Nonlinear Modeling and Forecast-

ing, pages 467{491. Addison-Wesley, 1992.

[JJ93] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and

the |protectEM algorithm, 1993.

[LP88] W. Lauterborn and U. Parlitz. Methods of chaos physics and their application to

acoustics. Journal of the Accoustical Society of America, 84(6):1975{1993, 1988.

[Lue75] H.D. Lueke. Signal�ubertragung. Springer, 1975.

[Met96] Eric Metois. Music, Sound and Information. PhD thesis, MIT Media Lab, 1996.

to appear.

[Mey93] H. Meyr. Regelungstechnik und Systemtheorie I/II. RWTH Aachen, 1993.

[MF53] P.M. Morse and H. Feshbach. Methods of Thoretical Physics. McGraw-Hill Book

Company, New York, 1953.

[MLS93] Fabrice Mortessagne, Olivier Legrand, and Didier Sornette. Transient chaos in

room acoustics. Chaos (American Institute of Physics), (3(4)):529{541, 1993.

81

[MS94] Jean Stephane Messonier and Bernd Schoner. Methode d'analyse et de charac-

terisation des signaux de piano reel et de synthese, 1994. IRCAM Paris/ Ecole

Centrale Paris.

[NH93] Radford M. Neal and Geo�rey E. Hinton. A new view of the EM algorithm that

justi�es incremental and other variants. 1993.

[PCG91] J. Puaud, R. Causse, and V. Gibiat. Quasi-periodicitie et bifurcation dans la

note de loupe. J.Acoustique, 4:253{259, 1991.

[PG] Joseph A. Paradiso and Neil Gershenfeld. Musical applications of electric �eld

sensing. Computer Music Journal.

[PP93a] K. Popat and R.W. Picard. Novel cluster based probability model for texture

synthesis, classi�cation, and compression. Proceedings of the SPIE. Visual Com-

munications and Image Processing '93, 2094, pt.2:756-68, 1993.

[PP93b] Kris Popat and Rosalind W. Picard. Cluster-based probability model and its

application to image and texture processing. 1993.

[RGF90] Kenneth Rose, Eitan Gurewitz, and Geo�rey C. Fox. Statistical mecanics and

phase transitions in clustering. Physical Review Letters, 65(8):945{948, 1990.

[RJ86] L.R. Rubiner and B.H. Juang. An introduction to hidden markov models. IEEE

ASSp Magazine, January 1986.

[Sac] Simone F. Sacconi. Die 'Geheimnisse' Stradivaris (German translation). Das

Musikinstrument, Frankfurt/Main.

[SYC] Tim Sauer, James Yorke, and Martin Casdagli. Embedology. Journal of Statis-

tical Physics.

[Tak81] Floris Takens. Detecting strange attractors in turbulence. In Lecture Notes in

Mathematica, pages 366{381. Springer, New York, 1981.

[WC90] Gabriel Weinreich and Rene Causse. Elementary stability considerations for

bowed string motion. Journal of the Acoustical Society of America, (89(2)):887{

895, 1990.

[WG93] Andreas Weigend and Neil Gershenfeld. Time series prediction. forecasting the

future and understanding the past, 1993.

[Wit19] Ludwig Wittgenstein. Tractatus logico-philosophicus. 1919.

[WMS95] Andreas S. Weigend, Morgan Mangeas, and Ashok N. Srivastava. Nonlinear

gated experts for time series: discovering regimes and avoiding over�tting. In-

ternational Journal of Neural Systems, 1995.

[WZN95] Andreas Weigend, Hans Georg Zimmermann, and Ralph Neuneier. Clearning.

1995.

82

Nomenclature

A;B;C;D;F;G;H;D Systemmatrices

a; b; c coe�cients of linear ARMA mod-

els

Bi Mass function of data point zi

D space dimension (without the out-

put dimension)

d index (indicating a space direction)

d(t) signal deviation from zero mean

d(n) discrete signal deviation from zero

mean

Cj Cluster

C() correlation dimension

Ei;j cost function associated with data

point xi and cluster Cj

E
q

st
short term expert

e(t) energy envelope

e(n) discrete energy envelope

ed
k

exponent associated with polynomial

basis function k and space direction

d

F e�ective cost function (free energy)

Fj e�ective cost function associated with

cluster Cj

f() prediction function

~F(s) Fourier transform of f(x)

g set of data points

Hd(�) Entropy of a d-dimensional lag-

vector

H(f) variation term

h(�) source entropy

i index (data points)

i(l) input time series

j index (basis functions)

K number of polynomial basis terms

Kl number of local basis terms

M number of basis terms (clusters)

m number of clusters per node (cluster-

tree)

N number of points

n number of iterations

O order of polynomial approximation

P prediction function in the state space

P (x) probability function

Pj covariance matrix associated with

cluster Cj

p(x) probability density function

p(nT) discrete bow pressure

pyjx conditional probability density func-

tion

pi;j relative probability of data point z

having been generated by cluster Cj

<p(x)> expectation of p(x)

<p(y jx)> conditional expectance of y

q index (experts)

Q number of experts

Rd(�) Redundancy of a d-dimensional

lag-vector

s(t) signal function

s(nT) or s(n) time-discrete audio signal

83

s(t��) time lagged signal

s((n�k)T) time-discrete lagged signal

T sampling period

Tst short term sampling period

Tlt long term sampling period

v(nT),v(n) discrete bow velocity

~wlt(l) internal long term state vector

~wst(m) internal short term state vector

~u(t),u(t) time-continuous input vector

~u(n),u(n) time-discrete input vector

~x(t),x(t) reconstructed time-continuous

state vector

~x(t),x(t) reconstructed time-discrete state

vector]

~xlt(l) long term input vector

V complete data(EM)

W unobserved data (EM)

X particular realization of x

y(t),ŷ(t) scalar system output

y(n),ŷ(n) time discrete system output

~z,z state vector combining input and out-

put dimensions

Z particular realization of z

Z total partition function

Zj partition function associated with

cluster Cj

Z subspace of possible state vectors /

observed data (EM)

�i;j probability of data point zi having

been generated by cluster Cj

� Lagrange multiplier (1/T)

�j weighted covariance matrix with re-

spect to cluster Cj

� set of parameters

�z set of parameters relating Z andW

�
y

j
set of parameters determining 	

y

j

� tuning parameter

� Lagrange multiplier or decay param-

eter (on-line-learning)

�i Lyapunov coe�cient

~�x
j

vector of cluster centers for cluster

Cj

�x
j
(x) local density estimate of x

�
y

j
(y jx) conditional local density esti-

mate of y

�z
j

local density estimate of z

� di�eomorphic mapping between me-

chanical and the reconstructed state

space

�(f) approximation prior

	k(x) polynomial basis term

	
y

j
(x) local function to approximate the

output dimension y

!j weight of cluster Cj

~�2
j

vector of variances associated with

cluster Cj

� time lag

84

