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Abstract

Robotic assembly of discrete cellular lattices at super-hertz (>1Hz) assembly rates is
shown to be possible by integrating the design of a modular robotic assembler with the
specified lattice topology such that the lattice can itself be removed from the incremental
assembly process. Limits to assembly rates are ultimately dependent on allowable error,
system stiffness, and damping characteristics. Vibrations due to cyclical motions of the
end-effector, locomotion system, and the dynamic response of an incrementally varying
lattice must settle to acceptable ranges to enable engagement between end-effectors,
discrete elements, and their affixing features to adjacent cells. For given system dynamics,
longer settling times enables greater energy dissipation, and less error. With a greater
allowable error at the interface, a shorter assembly cycle period can be attained. Passive
alignment features designed into the robot end-effectors, locomotion systems, and the
discrete lattice elements reduce the precision requirements of the assembly process by
opening up the acceptable error range, thereby, enabling higher assembly cycle-rates.
An experiment was performed to evaluate how an assembler locally referencing a lattice
performed in comparison to a globally referenced assembler. The two assemblers were
of similar kinematic form: both gantry-type CNC machines: a ShopBot and a custom
built relative robotic assembler. The results showed superior performance by the global
coordinate frame system. An error budget analysis of the two systems showed that the
locally referenced, lattice based system had a larger more variable structural loop than the
global coordinate frame ShopBot. The control experiment, demonstrated 0.1Hz assembly
rates, while first order approximations predict a maximum 4Hz cycle for the specified
interface geometry. Results show that in order to successfully assemble discrete cellular
lattices at super-hertz rates the robot must itself become the local, instantaneous global
coordinate frame such that the structural loop is absolutely minimized, while stiffness is
maximized; at the instantaneous moment of assembly the structural loop of the robot
must reference only itself.
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Chapter 1
Introduction

In order for robotic assemblers of discrete cellular lattices (RADCL) to reach super-
hertz (>1Hz) assembly rates the system must operate with a local, instantaneous, global
coordinate frame. Assembly happens without reference to the lattice, at all. The settling
time for allowable error is the greatest limit to assembly rates. To reduce this error
contribution the system must be maximally rigid, with minimal structural loop. There is
no room for the lattice to contribute error, and so it must not. The robot incrementally

ratchets along the lattice, placing cells relative to its own internal coordinate frame.

Robotic assemblers whose kinematic design is directly informed by a lattice topol-
ogy exploit tuning of kinematic and inertial mechanisms for high frequency assembly
and locomotion. Heterogeneous modular robotic systems, or relative robotic assembly of
non-stochastic discrete cellular lattices, provide a primary contrast to traditional man-
ufacturing in that the factory is turned inside out: the object being created is itself
the framework for the factory; the periodic lattice acts as both the desired construction
objective as well as the foundation of locomotion. It is also not self-assembly robotics,
rather wherein self-assembly systems the robot is both the assembler and the structure,
here, the focus is high performance lattice structures assembled by task-specific modular
robots. The complexity of assembly remains within the robot, allowing the lattice to

construct a material that is simple, light weight, and manufacturable at scale.

Large-scale assembly of arbitrarily sized periodic lattice structures lends itself to au-
tomated assembly. This, more so than other manufacturing processes; the environment
of the lattice is highly structured, enabling the automation to be equivalently structured.
Where a traditional industrial robot arm provides a range of functionality, its arrange-

ment of degrees of freedom and inertial characteristics generally serialize the operational
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capabilities of the system. Kinematic tuning can allow parallelization of assembly se-
quences while minimizing vibrational modes, thereby increasing robustness, and capacity
for higher velocity construction routines. Both the robot, and the structure are defined
with respect to one another, making each one a necessary, and contributing component
to a heterogeneous modular robotic assembly system. Relative robotic assembly enables
unbounded, repairable and reconfigurable construction, along with the computationally

tuned material performance of non-stochastic discrete cellular materials. Discrete cel-

Figure 1-1: A robotic assembler of discrete cellular solids, built as a test-case to evaluate
gantry-based assembly platforms.

lular lattices are a way of designing, and manufacturing with: ultralight, high stiffness
material regimes [17], reuse and reconfigurability of materials [18], tuned functional per-
formance [11], reduced simulation complexity [19], error correction [20], and automated
assembly. Rather than building large, monolithic, single-use components, the material is
discretized into simple, repeating, functional bits. A discrete set of base elements, with a
discrete set of allowable positions, and orientations are integrated to form non-stochastic
cellular lattices with bulk material properties. In this way, the performance of a material
can be maximized by incrementally assembling high-performance sub-elements. The next
element placed only after the prior, provides in situ error checking and correction. The
order of magnitude difference in wavelength between discrete element, and expressed
cellular solid material properties provides \/LN surface precision. The reconfigurability

maximizes the sustainability post life of the product as it is simply deconstructed, and

reconstructed. Finally, periodicity of structure reduces system uncertainty enabling par-

18



allelization of locomotion, and assembly operations.

The premise for cellular solids operation in the ultralight regime will be explained
along with how the design elements necessary to generate reconfigurable discrete cel-
lular lattices were identified through analysis and experimentation. The discretization
allows reconfigurability of materials yet the interface between individual elements sets
constraints on load paths, as well as the kinematics of assembly automation. The de-
sign of the interface is directly related to the connectivity, and structural performance
of the material. It is also dependent on the total static, and dynamic error budget of
the assembly process; the accumulation of mechanical error from the lattice, through the
assembler machine components, to the interface of the next adjoining element of the lat-
tice, and the dynamic vibration of lattice, and assembler all combine to define minimum
clearance, and ultimately allowable interface designs. These constraints affect the mass,
the stiffness of the system, and ultimately the achievable assembly rates.

By tightly integrating the design of the assembly robot along with that of the dis-
cretized lattice RADCL can be optimized. As is common in robotics, the mutual inter-
dependencies of the subjects must be applied to satisfy the desired goal. The breadth
of this subject requires an introduction to the current state of this emerging field, which
then enables an integration of those concepts into simulated, and built models.

To set the scope, similar heterogeneous reconfiguring modular robotic systems are
introduced. Then, the reader is taken on a dive into cellular materials, with the intention
that they surface with an appreciation for the benefits, and applications for non-stochastic
discrete cellular lattices. The effects of error are so crucial to understanding the demands
of the interface design - which ultimately define dynamic assembly rates - that methods of
tolerance, kinematic constraint, error budget analysis, and vibrations are presented, and
applied, along with a brief section discussing how elastic-averaging enables local error to
become global precision. The learnings from the background chapters are then applied
toward mechanical design experiments performed on lattice topologies, and their associ-
ated inter, and intracellular interfaces. Rather than present all of the work I performed
in this area, I provide a selection of the discovered pivotal design elements, then discuss
them through application, and simulation. !

To test the above defined dependencies of discrete lattice assembly I built a custom,
relative robotic assembler to test against an off-the-shelf, traditional, linear kinematic,

gantry-type CNC machine. The question asked was: does an assembler that locally

LAll work performed was scaled to the same cell dimension, that being the length of an edge of a
cube encompassing an octahedron: that is 100mm measured across opposing nodes on an octahedron.
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references a lattice place with more or less precision than a globally referenced assembler?
The experiment consisted of picking up an octahedron voxel from one location, and then
placing it into a target location within an edge-connected octahedral lattice. The two
machines had the same kinematic configuration consisting of linear actuators for x, vy,
and z axes. The dependent variable being that the custom built assembler system was
mounted directly on the lattice by way of an incremental relative motion system which
included leg, and foot actuators. The results of the experiment showed, that due to
the increase in uncertainty from the dimensional variability accumulated from the lattice
elements, a local assembler must actually be a locally global assembler.

The conclusion is that the relative robotic assembly process must minimize the struc-
tural loop. The global assembler was more successful in the experiment because the
tolerance stack only ever included its own, tightly controlled, and non-variable, hard-
ware. In order for a robotic assembler that moves relative to the lattice to assemble
locally, the assembler must minimize its structural loop; the assembler must place parts
only relative to itself, without dependency on non-adjacent lattice elements. At each in-
cremental step the assembler must consider that location its instantaneous global origin,
and place adjacent elements with reference to only this instantaneous coordinate frame.
In this way, static dimensional uncertainty is reduced, allowing more room to manage the
positional variability from dynamic conditions, increasing potential assembly rates. The
final chapters utilize this information, and make recommendations of designs for future

relative robotic assemblers to be built and tested.
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Chapter 2
Robotic Assembler Systems

The use of manipulators for assembly tasks requires that precision with which
parts are positioined with respect to one another be quite high. Current ins-
dustrial robots are often not accurate enough for these tasks, and building
robots that are may not make sense. Manipulators of greater precision can
be achieved only at the expense of size, weight, and cost. The ability to
measure and control contact forces generated at the hand, however, offers
a possible alternative for extending the effective precision of a manipulator.
Since relative measurements are used, absolute errors in the position of the
manipulator and manipulated objects are not as important as they would be
in a purely position controlled system. Since small variations in relative po-
sition generate large contact forces when parts of moderate sitffness interact,
knowledge and control of these forces can lead to a remendous increase in
effecive positional accuracy.

Craig, J. J. (1989). Introduction to robotics : mechanics and control. Read-
ing, Mass. : Addison-Wesley, c1989. [21]

2.1 Automated Assembly

2.1.1 Common Robot Classifications

Robotic automation is used to perform tasks that are either unsafe for humans, or rep-
etitious and require the dexterity of enough degrees of freedoms that it is not feasible
to build a factory-style automation system. Common views of robots are the traditional

six axis industrial robot arm, humanoid or self-assembling modular robots. The exam-
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ples in figure 2-1 from top right, clockwise show traditional factory automation in a
beer bottling system. The next shows a 6-axis industrial robotic arm, coupled with an
additional 7th rotary axis - this robot is performing advanced computational architec-
tural fabrication, it is machining custom panels for a computationally designed pavilion.
Humanoid robots often have seven degrees of freedom to mimic human range of mo-
tion. Humanoids are designed to operate in unstructured environments, safely, alongside
humans. Self-reconfiguring Modular Robots are combinations of 1-axis modules. The
reconfigurability has been partially driven by a desire to operate in unstructured envi-
ronments where adaptation is necessary. These often move quite slow, and are neither

good at being a robot nor a structure, but are highly adaptable.

All but one of the systems described are generalist, that is their design is such that
they have a multitude of degrees of freedom to enable a variety of applications. This
makes them adaptable for varying tasks, but the serial-link configuration also brings with
it the additional mass of potentially unnecessary degrees of freedom. This additional mass
can limit rates of motion (due to power or vibration limits), as well as limit dexterity in

tight spaces. Task specific assemblers can exploit task specific kinematics.

Classification of Automation

.
f Open-S: e Modular

R -
Zykov et al (2004). Molecubes ded : Di ifying Capabiliti
Robotics IROS 2004.

< [
58
|

- e
Carney et al, Meka Robotics, 2009 Menges et al, ICD/ITKE Research Pavilion 2011, Stuttgart University, 2011

Figure 2-1: Classification of Automation, clockwise: factory automation [1], humanoids,
robotic fabrication [2], self-assembly [3].
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2.1.2 Task Specific Assemblers

Task Specific
Robotic Assemblers

Staritz et al. Skyworker : A Robot for Assembly , Inspection and
Maintenance of Large Scale Orbital Facilities IROS 2001.

Hjelle, David & Lipson, Hod, A Robotically Nigl et al, Structure Reconfiguring Robots IEEE Galloway et al, Factory Floor : A Robotically http://www.tethers.com/pap ACE2013_Spider

Reconfigurable Truss ASME/IFToMM International Robotics & Automation Magazine, pp. 60-71, Reconfigurable Construction Platform, IEEE Fab.pdf
Conference on i hanisms and 2013 International Conference on Robotics and
Robots (ReMAR), 2009. Automation, pp.2467-2472, 2010.

Figure 2-2: Task specific assemblers, counter-clockwise: space truss assembly [4], modular
robotic truss assembly [5], modular robotic [6], automation cell [7], filament winding [8].

Driving for more efficient fabrication modular reconfiguring robotic systems have
been utilized to perform the specific task of assembling arbitrarily sized truss structures.
Trusses are sparse, load bearing systems that are fundamentally, a set of distance and
angle constraints. The system on the right is spiderbot, a space-based, in situ robotic
3D printer of large apperature trusses. Below it is a self contained filament winder for
extruding composite trusses. Beside that is another type of statically mounted truss
extruder that builds with distances and angles. The systems on the left crawl along the
structure and assemble a truss out of discrete elements. In each case the assembly com-
ponents have specific features to aid assembly. These features include passive alignment,

fixturing and even locomotion mechanisms.

2.2 Modular Robotic Systems: Coordinated Assem-
bly of Lattice Structures

One of the grand-challenges of robotics is the design and coordination of multiple robot

systems to cooperatively solve tasks [22] - scalability through parallelization is the fun-
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damental inspiration. A taxonomy of this new field is still subjective, and best identified
by task goals rather than control architecture. Roughly, system architectures can be
discretized into low-instance coordinated tasks, centralized computation with task dis-
tribution, and decentralized algorithmic coordination — swarms.

Self-assembly, and re-configurable robots have been used interchangeably to describe
both robots that themselves re-configure into new shapes (programmable matter [23]),
and those which are able to compose, and decompose structures. This research focuses
on reconfiguring robots, that is robots acting on lattice structures, but not (generally)
being an integral part of the lattice. In this way the structural performance of the
lattice can be maximized without massive embedded complexity. Similarly, the robotic
assembler can be optimized to assembly tasks specific to the lattice topology, without
the complexity of also being the lattice. The adaptability of structures is highly desirable
for space-based construction where mass can be optimized for final in-space use rather
than launch loading resilience — that is structural elements are packaged for launch and
assembled in-space. Further, localized failures may be compensated or repaired with
reconfigurable systems. Reconfigurability also allows the building of temporary scaffold
structures to allow relatively simple, one-unit-step robots to assemble complex geometries
such as overhangs or pillars [24]. Further, in some instances, the robot may behave as
both the assembler and the structure [25], and be optimized to live, and interact only
within the lattice structure [26]. Optimization between hardware, and path planning is
tightly coupled due to computation, communication, topology, and physical limitations.

Control strategies of swarm systems are generally based on a principle of stigmergy:

In such algorithms, local patterns of matter that result from past construction
provide the exclusive cues necessary to direct and coordinate the building ac-
tivities of the swarm. Therefore, any coherent architecture naturally induces
coordination, which may then be seen as a by-product of the architecture;
more over coordination severely constrains in turn the spaces of possible co-

herent architectures. [27]

Further, a range of control strategies based on stigmergy algorithms may include such
ideas of granular convection, gradients [28], etc. Most of these strategies end up being
relatively similar in the fact that the agents have limited or no knowledge of overall
mission goals but instead stochastically investigate, and assemble based on simple rules.
While, this strategy does allow the construction of structured environments, it is done

without specificity. If detailed custom configuration is necessary then a fully generalized
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control approach must make use of more centralized control. Strategies range from high
bandwidth communication from fully centralized computation to beacon elements that

manipulate locally generalized construction.

The following is a short survey of the current state of multi-robot coordination for

solving the task of assembly of discrete, cubic, lattice type structures.

2.2.1 Brick Construction

The Self-organizing Systems Research Group at Harvard University has developed a brick
laying robot bioinspired by termite construction techniques, TERMES. "The hardware
comprises a mobile robot and specialized passive blocks; the robot is able to manipulate
blocks to build desired structures, and can maneuver on these structures as well as in
unstructured environments' [24]. The brick morphology of the structure is similar to an
unstructured environment, such as a flat floor or gravel covered field. The bricks contain
kinematic locating features to allow higher placement precision than the robot is, in itself,
capable of providing. Similarly the bricks contain geometry to provide stepping features,
locating, and communication features that provide information to the assembler robot.
Control methodology is based on stigmergy with the modification that agents may be
turned into beacons. This means agents, in general, follow simple rules, however, they
can be locally manipulated to change their path by local beacon information. While the
agents may traverse on unstructured environments, they are gravity based, and as such
are constrained to assemble in ordered fashion. Temporary scaffold structures can be

built to allow complex features such as pillars, and overhangs.

Figure 2-3: TERMES, bio-inspired construction robots.
Petersen, K. H., Nagpal, R., & Werfel, J. K. (2011). Termes: An autonomous robotic

system for three-dimensional collective construction. In Robotics: Science and Systems
Conference VII. MIT Press. [24].
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2.2.2 Active Modules with Passive Truss Elements

A modular robotic system designed to not only build truss structures but to behave as
active elements of the structure; Shady-3D is a three degree of freedom modular robot
that is specified to live within the truss environment it constructs. Reconfigurability of
the structure is a primary element of the design, such that a robotic system "decomposes a
given structure into constituent building blocks and reassembles the same building blocks
into a target structure...[this] approach uses truss structures rather than modular cubic
units, allowing lighter structures and more flexibility in reconfiguration” [29]. Multiple
assembler robots may gang themselves to increase their effective degrees of freedom for
specific tasks. This research is a collaboration between the labs of Hod Lipson at Creative
Machines at Cornell and Daniela Rus at the Distributed Robotics Lab at MIT. Several
iterations of the robots and control algorithms have focused on topological optimization
of the structures. Coordinated assembly, and activation of the structure is optimized

through a quadratic competitive ratio for both static and dynamic graph methods [30].

Figure 2-4: Shady-3D, assembler robot for reconfigurable truss lattice structures.
Terada, Y., & Murata, S. (2008). Automatic Modular Assembly System and its Dis-
tributed Control. The International Journal of Robotics Research, 27(3-4), 445—462.
(30].

2.2.3 Relative Robotic Lattice Assembly

The Automatic Modular Assembly System (AMAS) is a heterogenous modular robotic
construction system. The robotic assemblers are active making motions based on a
finite set of required motions. The building blocks are passive cubic lattice elements,
though they contain mechanisms for mechanical latching, power and communications
transmission. The assemblers locate locally, relative to the structural elements of the

lattice:

The assembler robot can walk on the modules by using connectors on their
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hands and carrying a module with its hand (L-shaped part). As any modular
structure made up of these modules can be described on a cubic grid, a finite
set of motion patterns is sufficient to build any shape. We took advantage of
this to minimize the configuration of the assembler robot. Only four degrees
of freedom are enough for locomotion and adding a new module on any surface
of another. [31]

Figure 2-5: AMAS assembler robot.
Terada, Y., & Murata, S. (2006). Modular stucture assembly using blackboard path plan-
ning systems. In International Symposium on Automation and Robotics in Construction

(pp. 852-857). [26]

The control strategy is gradient based; a gradient between supply chain and growth
front is communicated to the assemblers to direct their motion. “The desired shape of
the panel is given a prior: to both the robot and the structure modules. The modules
can tell whether they are at the growth front, or inside of the shape, and whether their
neighbor point is occupied” [31].

2.3 Global vs. Local

Each of the above modular robotic systems utilize local reference frames for positioning
and locomotion. The premise being the ability to build structures without bound. That
is, by making incremental motions across the structure - assuming an effective method of
material distribution - the scale of structure to be constructed is effectively unbounded.
Repair, and reconfiguration of these structures is also possible with modular robots,
as specific components can be reconfigured in situ, without dissassembly of monolithic
components in a factory. Each of the above robotic systems operate at a scale on the

order of the discrete cell size, or smaller. Each cell provides some alignment features that
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provide a local position reference. The robot places components only onto the adjacent
cell, and so the precision required is based on the structural loop between only adjacent
cells. This provides a placing accuracy directly related to the precision of two cells.

When it comes to discrete lattice assembly, the assumption is that this local reference
potentially provides higher locational precision than a global scale assembler; the error
stack includes only two adjacent cells, where as global assembly includes the root sum
square of all deviations between the global reference, and the end-effector. That is an
end-effector, whose location is referenced to a single global origin, traversing across a vast
array of cells to a target location may not find the target location in its exact, specified
spot, due to the accumulation of error of each of the discrete cells. There are two possible
options, then to solve this: elastic averaging, and relative placement.

It is possible to have error reduction better than linear when operating locally by

exploiting elastic averaging (see §4.1.3). A modular robotic assembler that spans across
1

N, parts can express a local precision that is . For a magnitude increase in averaged

accuracy it would require a span across 100 parts ! perhaps unrealistic. An error reduction
of one half is potentially possible with four points of contact. It should therefore be
possible to utilize the concepts from modular robotic assemblers of discrete lattices to
design an assembler that has higher positioning accuracy, enabling faster cycle rates (see
§4.2), by utilizing a locomotion system spanning multiples cells.

Alternatively, a further reduction in error can be achieved if the lattice is actually
not part of the structural loop of assembly. If, instead the robot has alignment features
that enable placement only with reference to its own hardware, then the static and
dynamic error contribution from the lattice can be completely removed; the robot latches
onto a lattice cell, and then makes a placement maneuver into the adjacent cell by
mechanically referencing its own hardware. In this way the global origin of the robot
moves incrementally with the robot; at each step its instantaneous local position is its

global reference frame.
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Chapter 3
Discrete Cellular Lattices

Here we are concerned with lattice or cellular materials. Like the trusses
and frames of the engineer, these are made up of a connected array of struts
or plates, and like the crystal lattice, they are characterized by a typical
cell with certain symmetry elements; some, but not all, have translational
symmetry...At one level, they can be analysed using classical methods of
mechanics, just as any space frame is analysed. But at another we must think
of the lattice not only as a set of connected struts, but as a ‘material’ in its
own right, with its own set of effective properties, allowing direct comparison

with those of fully dense, monolithic materials.

Ashby, M. F. (2006). The properties of foams and lattices. Philosophical
Transactions. Series A, Mathematical, Physical, and Engineering Sciences,
364(1838), p16. [32]

Cellular lattices, low density materials whose properties are defined by the bend-
ing or stretching of load carrying, highly connected, and sparsely distributed structures
with periodic, and translational symmetries [33] [34] exhibit isotropic, anisotropic, or
quasi-isotropic behavior determined by the connectivity of their strut node network [32].
Stretch dominated axial stresses or coupled bending moments are primary material be-
havior indicators that can be identified by the connectivity at nodes and the multiphase
distribution of rigid and mechanism cells throughout the material [35, 36]. "For the lat-
tice to behave as a material, the wavelength of any loading is also much longer than
that of the lattice elements. In contrast, the lattice behaves as a ‘structure’ when it
contains a relatively small number of lattice elements, and the length scale of the loading

is comparable to that of the lattice elements" [37].

29



Primary engineering interest of the cellular lattice is the property of sparse density.
Two distinctly different material behaviors exist within this ultralight regime: energy
absorption, and stiffness [38]. Each property, unique in its cellular structure, application,
and traditionally, in its manufacturing process. Historically engineered uses of cellular
solids have relied on stochastic, bending dominated cellular structures such as honeycomb
and foams, but modern manufacturing techniques enable tuned stretch dominated non-
stochastic lattices that demonstrate an order of magnitude increase in structural efficiency
over bend dominated lattices [35, 39].

This research is primarily concerned with maximizing stiffness and strength of struc-
tures and developing means to assemble lattices from discrete cellular components. The
following is a brief explanation of how the rigidity of a lattice framework is examined and
what underlying scaling variables exist. Then I introduce the variables of importance to
discrete cellular assembly, and how they are effected by the lattice and following chapters

will explain how they effect assembly scalability.
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Figure 3-1: Celluar lattices. The left-most image is a stochastic cellular lattice metal
foam [9]. The right-most image is a non-stochastic discrete cellular lattice designed and
built by the author.

3.1 Cellular Lattice Rigidity

Analysis of the behavior of cellular lattices requires both a micro and a macro description.
The cellular material has useful engineering mechanical properties that can be treated
as a bulk material with elastic modulus, yield strength, and mass, among other things.
These properties however, are dependent on the aggregate behavior of the cellular lattice
that makes up its microstructure. The most defining attribute of the lattice is how loads
are transmitted through the connecting material that forms the cells, how they connect
to one another, and the distribution of cell types throughout the lattice. The nodes that

are at the interface between load paths can be either exactly, over, or, under constrained.
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If they are under constrained then an applied load to the lattice, such a compression or
shear will cause the nodes to migrate and the connecting members to bend. If the nodes
are exactly, or over constrained by the load bearing members then those same members
will experience only axial, and no bending loads. This is significant because it results in
an order of magnitude difference in stiffness. Perhaps the best description was given by

Deshpande et al. in the following quote and accompanying figure 3-2:

Figure 3-2: (a) a mechanism; (b) a structure. [35]

An open-cell foam can be treated as a connected set of pin-jointed struts
by the following argument. Consider the pin-jointed frames shown in Fig.
1. The frame in Fig. 1(a) is a mechanism. When loaded, the struts rotate
about the joints and the frame collapses; it has neither stiffness nor strength.
The triangulated frame shown in Fig. 1(b) is a structure: when loaded the
struts support axial loads, tensile in some, com- pressive in others. Thus, the
deformation is stretching-dominated and the frame collapses by stretching of
the struts. Imagine now that the joints of both frames are frozen to prevent
free rotation of the struts. On loading the first frame, the struts can no longer
rotate. The applied load induces bending moments at the frozen joints, and
these cause the struts to bend. This is the situation in most foam structures.
However, freezing the joints of the triangulated structure has virtually no
effect on the macroscopic stiffness or strength; although the struts bend, the
frame is still stretching-dominated and the collapse load is dictated mainly
by the axial strength of the struts.

Deshpande, V. S., Ashby, M. F., & Fleck, N. a. (2001). Foam topology:
bending versus stretching dominated architectures. Acta Materialia, 49(6),
1035.
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Understanding, now, that the lattice may be treated as a pin-jointed framework of
struts, the traditional next step is to then evaluate the Maxwell rigidity criteria, and
the coordination number for the repeating cell type. Both of these methods evaluate the
kinematic constraint of lattice nodes, yet, the numerical simplifications of geometrical
constraint disregards the mixture of multiphase closed polyhedra (i.e. rigid octahedron
mixed with flexible truncated cubic forms) that necessarily makeup a space filling lattice,
and also help define the operating behavior of cellular materials. The following section
will briefly introduce kinematic constraints which apply both to the understanding of
cellular lattice microstructure, rigid frameworks, as well as later will be directly applied

to discrete cellular lattices.

3.1.1 Kinematic Constraints

An object can move freely in space unless constrained to not move in certain directions by
some fixing force. A 2D object has three kinematic degrees of freedom two translational
and one rotational: X,Y 6,. A 3D object has six kinematic degrees of freedom three
translational and three rotational: X,Y, 7, 0,,0,,0.. Structures make use of secondary
rigid bodies to enforce the constraints to limit each of the degrees of freedom. FExact
constraint design, or kinematic constraint design is a design methodology that aims to
constrain each of the required degrees of freedom and only those required, such that
additional internal stresses are not applied to the structure, and that robust, repeatable
precision location of parts is possible [40].

The methodology is straightforward. Each constraint should be effective as a strut
with pins on each end, and acts along a line of action, applying tension or compression
forces and no other. Only translation perpendicular to each line of action is possible. At
the point of intersection of two lines of action there is a rotational degree of freedom,
known as an instantaneous center of rotation. As the point of intersection approaches
the limit of infinity the lines approach parallel and the rotation can be approximated
as a translation. The instantaneous center of rotation is only valid at the instant of
evaluation as it can migrate based on the orientation of the constraint members and their
intersections. In this way, all degrees of freedom can be considered rotations. For each
unwanted degree of freedom a constraint is needed to satisfy the equations of equilibrium.
Further, to form a rigid body framework "each constraint line needs to have a "good size'
moment arm about the instant center of rotation defined by the intersection of the other

two constraint lines" [40].
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The figure 3-3 shows an under constrained and exactly constrained body. The in-
stantaneous center of rotation is at the intersection of each constraint line, colored light
blue. In frame (a) it is apparent that z, and y are effectively constrained, yet there still
exists a rotational pivot at this arbitrary location on the body shown in blue. The body
is able to rotate about this point, and this point does move based on the orientation of
the body. This system is a four bar linkage. Frame (b) shows a third constraint has
been established that intersects with the x-axis constraint, creating a secondary instant
center of rotation. This new line of action is some "good size" distance from the origi-
nal instant center of (a) and generates a moment that restricts the rotational degree of
freedom that had existed. In this way this framework is now rigid, and each degree of
freedom is exactly accounted for, it is an exact constraint design. If however, an addi-
tional strut were attached to the body in (b) and it had any, even infinitesimal variation
as is always the case in real systems, then all of the members would then be forced into
conditions of self stress as they strain to accommodate the new, over constraint. Any
infinitesimal extension in a strut due to an over constrained structure induces internal
stresses throughout the structure, and is generally considered an undesirable feature in
the mechanical design of structures. The following section shows how Maxwell utilized
these concepts of constraint to apply towards the construction of rigid frames, and how

his framework has since been utilized to predicit the behavior of cellular solids.

Figure 3-3: (a) two translations constrained, one rotation free; (b) exactly constrained
two translations and one rotation.

3.1.2 Modified Maxwell Criteria of Rigid Frameworks

Maxwell [41] defined the necessary conditions for a pin-jointed frame of struts to be rigid
statically, and, kinematically determinate in the form a stability criteria. His method-
ology later evolved into exact kinematic constraint as described above [42]. Maxwell

established his rule to define the rigidity of frames, as at the time he was developing
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precision instrumentation for laboratory equipment, rather than infinite frameworks of
lattices. Nonetheless, it has been shown that a cellular framework can be evaluated as
a system of struts, and pin joints [35]. The rules were updated to include information
regarding not only if the frame was rigid, but if it is bending, or stretch dominated when
the pins are effectively frozen in the nodes of a cellular lattice. The three dimensional
criteria modified to examine the frame stability in terms of mechanisms and self-stress is

given in the following by Pellegrino and Calladine [43]:

M=b-3+6=s5—m (3.1)

where, b is number of non-collinear struts, j is number of joints, s is value of self-stress,
m is number of mechanisms. A visualization of what self stress and mechanisms mean

in a framework is seen in figure 3-4.

(a) s=0,m=0

(¢c) s=1,m=0 (d.1) s=1,m=1 (d.2) s=1,m=1

Figure 3-4: “Perspective sketches of assemblies to illustrate statical and kinematical
determinacy and indeterminacy. (a) The three foundation joints lie at the comers of a
square. (b) One bar has now been removed, and the assembly has a mode of inextensional
displacement in which the central node moves towards the reader. (c¢) The fourth bar
makes the assembly statically in- determinate. (d.1) A third bar added to (b) makes the
assembly both statically and kinematically indeterminate; but only small displacements
of the inextensional mechanism are possible. (d.2) As (d. 1), except that the three
foundation joints are colinear, and free motion of the inextensional mechanism, as in (b),
is possible.”

Pellegrino, S., & Calladine, C. R. (1986). Matriz analysis of statically and kinematically
indeterminate frameworks. International Journal of Solids and Structures, 22(4), 410.

It should be noted, though, that a similar method of evaluating the behavior of cell

loading conditions that commonly leads to misinterpretation of the Maxwell Criteria is
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that of coordination or connectivity number, 7, that is the average number of struts
connected to a node. This criteria is used as an explanation for how rigidity can be
defined for an infinite lattice. From coordination number the conditions for rigidity are
Z = 4 for 2D, and Z = 6 for 3D structures[43]. What is commonly forgotten, however, is
that Maxwell’s rule specifically states only non-collinear struts may be evaluated due to
redundancy and the kinematic indeterminance of the equilibrium equations due to strut
collinearity. Figure 3-7 shows a symmetrically sectioned cubic octahedron, showing how
it is in fact a mechanism.

The more accurate Pellegrino and Calladine equation helps us understand the loading
conditions of a cellular lattice. When M < 0, the frame is a mechanism and bending
dominated. When M >= 0, the structure becomes kinematically determinate, and strut

loading conditions are dominantly axial - the frame is stretch-dominated [43].

3.1.3 Stiffness of Beams

The literature has examined through empirical evaluation as well as linear algebraic anal-
ysis that stretch dominated frameworks are an order of magnitude stiffer than bending
dominated, and what conditions must be present in order for a lattice to exhibit such be-
havior. However, one additional factor to explicitly state to help understand the scaling
differences is an examination of the stiffness of a simple beam in each of these loading
conditions: axial, and transverse bending (see figure 4-4).

The distinction between stretch and bending dominated behavior can be further un-
derstood by comparing the stiffness of a solid round beam in axial versus bending load
conditions (figure 3-5). The mechanics for this can be found in most mechanics of mate-

rials or mechanical design references[44, 45]:
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Where, for a round slender member, d << L, and inserting
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back into the stiffness equations

AE TE [
ho = _4<L> (3:4)
3EI 3k [(d*\° 1
ky = o S e .
P 64 (L) L (3:5)

it can be seen that axial stiffness is related to a beam slenderness ratio % by an order
of magnitude scaling O(%) = O(1). The bending stiffness of the same beam is then a
two order of magnitude O(2) scaling of this slenderness ratio, and additionally, inversely

proportional to the length of the beam.

Due to the slenderness condition of the beam this second order scaling explicitly
defines the empirical evidence found by Ashby et al.[32] that bending-dominated lattices
exhibit an order of magnitude less stiffness than highly triangulated stretch-dominated
lattice frameworks. §4.2.2 goes into some detail of the system response to each of the

axial and bending conditions.

] — e
(a) (b)

]

Figure 3-5: (a) Applied bending load; (b) applied axial load; (c) axial load sufficient to
induce buckling.

3.1.4 FEuler Beam Buckling

There is a limit to the allowable slenderness ratio, and that limit is due to buckling. A
long slender beam will still exhibit bending modes even in an axial load condition when
the compression stress reaches a critical stress. The Euler buckling criteria for a slender

beam in compression is [44]:

Ocr = = (36)
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where, r is the radius of gyration, o., is the critical buckling stress, I second area moment
of inertia, A projected area of beam, £ modulus of elasticity, and L, is the effective length.
The effective length is dependent on the constraints applied to the end conditions and
can be found in the references of Hibbeler or Juvinall [44, 45]. Assuming a pin jointed
constraint, this can be reorganized to evaluate the maximum effective beam length for a

given geometry,

mE
L, = 3.8
" O-CT ( )
or, in the case of the simple round slender beam,
dm*E
L=°T (3.9)
4 ocr

0. must remain below the yield stress limit of the material, and depending on the
application, should likely be further reduced to the fatigue stress limit.

For evaluation of cellular lattices it has been found that a pin joint connection be-
tween struts, and nodes is an adequate representation [35]. However, what remains to be
evaluated is if this effective length could be considered fixed, rather than pin-joint. For
pinned joints L. = L, but for fixed end joints the theoretical limit is 2L, = L, and em-
pirically 0.65L. = L. Hence, a fixed joint approximation would improve the slenderness
ratio, which theoretically cubicly improves volumetric sparsity by a half to nearly a full

order of magnitude. !

3.1.5 Multiphase Cellular Distribution

'It is worth mentioning here that any convex simply-closed polyhedron with
triangular faces satisfies the Maxwell criterion and is rigid (see Appendix 9
in Calladine). It is generally assumed that the best model for a cell in a
foam approximates a space filling shape. However, none of the space filling
shapes (indicated