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Abstract

Robotic vehicles walk on legs, roll on wheels, are pulled by tracks, pushed by propellers,
lifted by wings, and steered by rudders. All of these systems share the common char-
acter of momentum transport across their surfaces. These existing approaches rely on
bulk response among the fluids and solids. They are often not finely controllable and
complex approaches suffer from manufacturing and practical operational challenges.

In contrast I present a study of a dynamic, programmable interface between the
surface and its surrounding fluids. This research explores a synthetic hydrodynamic
regime, using a programmable surface to dynamically alter the flow around an object.
Recent advances in distributed computing and communications, actuator integration
and batch fabrication, make it feasible to create intelligent active surfaces, with signifi-
cant implications for improving energy efficiency, recovering energy, introducing novel
form factors and control laws, and reducing noise signatures.

My approach applies ideas from programmable matter to surfaces rather than vol-
umes. The project is based on covering surfaces with large arrays of small cells that can
each compute, communicate, and generate shear or normal forces. The basic element
is a cell that can be joined in arrays to tile a surface, each containing a processor, con-
nections for power and communications, and means to control the local wall velocity
The cell size is determined by the characteristic length scale of the flow field ranging
from millimeters to centimeters to match the desired motion and fluidic system.

Because boundary layer effects are significant across fluid states from aerodynamics
to hydrodynamics to rheology, the possible implications of active control of the bound-
ary layer are correspondingly far reaching, with applications from transportation to
energy generation to building air handling. This thesis presents a feasibility study,
evaulating current manufacturing, processing, materials, and technologies capabilities
to realize programmable surfaces.

Thesis Supervisor: Neil Gershenfeld

Title: Professor of Media Arts and Sciences
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Chapter 1

Introduction

A programmable surface is a wall that can be dynamically commanded at arbitrary

resolutions finer than the bulk motion of the entire wall. The surface may interact with

another solid or a fluid. When in contact with other solids, the programmable surface

may be used for mobility, eg, sliding over terrain, or the manipulation of objects across

the surface, eg, a robotic floor. When interfacing with fluids the programmable surface

can dynamically alter the flow around the object. This largely unexplored fluid dynamic

regime has implications in drag reduction, controls without control surfaces, conformal

means of propulsion, and synthetic geometries, leading to novel form factors, noise

reduction, and the ability to create unnatural flow fields.

Programmable surfaces are an extension of work being done in programmable mat-

ter. Reconfigurable robotics, a subset of programmable matter that seeks to make self-

reconfiguring volumes, has been progressing in the last decade to address the complete

tool chain required to produce reconfigurable robots. Although there are several imple-

mentation schemes, all of the approaches must address geometry deconstruction and

assembly planning, goal mapping and programming, internal and external communi-

cations, intra-node actuators and mechanisms, and power sources. At the moment,

the cost and complexity of manufacturing, the necessarily large numbers of nodes to

construct large objects at fine resolutions, and the density of forces required to move

adjacent nodes with respect to each other have limited physical investigations to rela-

tively small numbers of macro-sized parts. In contrast to reconfiguring volumes, pro-



grammable surfaces are only concerned with the interface of the outside edge of the

object. There is no rearrangement of the internal volume of the object.

The approach to programmable surfaces implementation is similar to programmable

materials. The surface is divided into small cells or nodes, each with the means to

interface with the nearby fluid, computation, communications, and power. Nodes are

arranged side-by-side in arrays and are connected to each other mechanically in a man-

ner than may allow the entire array to flex. The nodes are individually addressable and

controllable so that each can create a different surface velocity. The combined effect of

cells working together is to alter the apparent stream lines of a fluid flowing about the

solid object. The net result is the ability to set an arbitrary wall velocity at a small patch

on a surface. When a flow is present over the surface, the surface no longer appears to

be a simple fluidic "stick" condition but an alternative boundary layer between the free

stream and surface is created.

In comparision to programmable matter, programmable surfaces are easier to real-

ize with today's technological capabilities because substantially fewer number of nodes

are required to cover the surface area of an object (rather than fill its volume) and

allows for larger feature sizes (because resolutions required are much larger).

While techology and manufacturing are not quite ready to produce gallons of pro-

grammable materials to enter mainstream usage, this thesis presents a feasibility study

of creating programmable surfaces using current manufacturing capabilities and tech-

nologies. I review recent advances in distributed computing and communications, ac-

tuator integration and batch fabrication for the sizes and quantities required to make

significant impacts in energy efficiency, recovering energy, introducing novel form fac-

tors and control laws, and reducing noise signatures.



Chapter 2

Background

Programmable surfaces is an extension of work in programmable matter. It is a novel

technology that builds upon recent progress in several key areas.

Fully realized, programmable matter is the stuff of science fiction. On command,

it changes from something to something else. Sometimes it is self-aware, sometimes it

is commanded remotely. A key characteristic of programmable matter is the ability for

the material to respond to inputs by transforming shape or changing its other physical

properties.

Toffoli and Margolus are credited with coining the term programmable matter to

describe a "three-dimensional, uniformly textured, fine-grained computing medium"

[55]. Rather than a collection of passive molecules, programmable matter is composed

of uniformly interconnected identical computers, capable of data handling and process-

ing. This synthetic "material" has bulk properties which are invariant to the amount

(or number) or computers involved. Toffoli and Margolus' definition in 1991 called out

four properties of programmable matter: 1) the material can have arbitrary size and

infinite extensibility, 2) the interconnections among the computing units are capable

of dynamic reconfigurability, 3) the programmable matter can be interactively driven

by an external operator or event, 4) the operation of the programmable matter offered

complete access to real-time observation, analysis, and modification.

The first hardware implementation of programmable matter was CAM-8, was a

uniform, scalable, parallel computation machine intended for use as a general purpose



lattice-gas or similar simulations [33]. Physically, the CAM-8 machine was a Sun work-

station host controlling STEP modules plugged into a common bus. In short, it was

physically a "box" rather than itself a "material".

A 2004 Defense Advanced Research Projects Agency (DARPA) program investigat-

ing programmable matter emphasized the physical notion of physical matter. From

the solicitation, programmable matter was defined as "[a] material that can perform

several operations in sequence: upon activation by an external signal, decode and prop-

agate instructions; translate information into action, transport particles and assemble

shapes; interlock particles to form an object; perform error-checking and encode final

state information, again activated by external signal; and disassemble into the starting

material."

Programmable matter is often envisioned to be composed of millimeter or smaller

scale microsystems, including speculation on programmably organizing quantum dots

to emulate different materials from an atomic level[34]. A particularly active subset

of programmable matter research is reconfigurable robots which can both change shape

as well as move. Work in this area is generally focused on constructing large quanti-

ties of scaled-up elements which are connected through a variety of force mechanisms

such as magnetic, electrostatic, or geometric latching. The term has become generally

accepted to refer to a universal material which can be commanded to change its phys-

ical properties, in particular its mechanical properties such as shape. More recently,

programmable matter is often described as a fundamentally "digital" material having

computation, sensing, actuation, and display. Furthermore, these properties are con-

tinuous and commandable throughout the medium. DARPAs Programmable Matter

effort1 today "represents the convergence of chemistry, information theory and con-

trol into a new materials design paradigm - 'InfoChemistry' - that focuses on building

information directly into materials". Infochemistry and its successor program, Maxmi-

mum Mobility and Manipulation2 , renewed the emphasis on the reversibility of material

assembly, analogous to Toffoli and Margulos' requirement of reconfigurability.

lhttp: //www. darpa. mil/OurWork/DSO/Programs/ProgrammableMatter. aspx2DARPA Maxmimum Mobility and Manipulation (M3) is the program under which a part of this
research was funded.



In most cases, approaches aim to manipulate volumes rather than surfaces. In

practice, significant challenges remain, in particular to shrink the size of computation,

power electronics and force actuators. The smallest programmable matter nodes are

approximately 1 cm in dimension[19] and their manufacturing complexity and cost

have precluded creating large numbers of nodes sufficient for the "buckets of parts"

vision'. To form volumes, nodes must be concerned with linkages and interactions in

every direction surrounding them (i.e., for a cube-shaped node, there must be essen-

tially six sets of sensors and bonding elements). Programming surface motion rather

than volumetric shapes is an easier goal because there only needs to be interaction of

the "outside" surface that is in contact with the fluid. Even if the overall cell size is the

same, internal feature sizes can be larger. Additionally, as the size of the object grows,

a much smaller number of nodes is required to cover the surface area rather than fill

the volume. This allows us to make larger objects more quickly because fewer nodes

need to be manufactured and assembled.

Toffoli and Margolus's CAM-8 machine was a step along the path to realizing uni-

versal computation using cellular automata. Dating from the 1940's, cellular automata

is a discrete model of system dynamics comprised of discrete cells, arranged on a grid,

with states that simultaneously update based on rules affected only by neighboors. CAs

can be used to model many different physical processes including fluid dynamics. Fur-

thermore, the models can be increased to cover more volume by expanding the size of

the lattice.

As it becomes increasingly difficult to ensure that all sections of the lattice are

updated at the same time, an asynchronous design becomes necessary; this is an asyn-

chronous cellular automata. An "asynchronous logic automata" is a specific kind of ACA

which is scalable like all ACAs but designed so that its behavior is always determinis-

tic. As with CAs, the computational structure of an ALA mirrors its physical structure.

Since computing modules are assigned to physical modules, there is a link between the

3For Butera's 2002 Paintable Computer paintable display, 1000 macroscale nodes were created and
demonstrated. Each node had a light sensor, light emitting diode (LED), processing, and IR communi-
cation with neighboors. Although this demonstration involved a very large number of working nodes,
they were 3.4 cm devices intended to represent 1 mm "particles" [7, 28].



network topology and physical topology.

With programmable surfaces, cells also have control of an actuator which can inter-

act with adjacent fluid. These cells define a surface that is the same shape as the fluid

so that the computational architecture mirrors the physical system. This approach is

immediately scalable in number and portable across technologies. The following thesis

investigates the maturity of current technologies and processes required to realize a

programmable surface.



Programmable Surfaces

Feasibility Studies



Feasibility studies contents:

Chapter 3 Propulsion: Scaling and Wake Interactions
Chapter 4 Drag Reduction: Boundary Layer Control
Chapter 5 Control and Programming: Asynchronous Thrust Array
Chapter 6 Energy Generation

As with other programmable matter approaches, we expect to construct the pro-

grammable surface from many small cells or nodes. Although the implementation calls

for a great number of nodes, each node is identical and simple. The aggregate effects of

a large number of simple nodes can create a complex fluidic response; we need to un-

derstand streamwise fluidic coupling, thrust output and wake profile for these simple

nodes when arrayed together.

Before we set about constructing a large scale object, we take a broad look at previ-

ous work in the target application areas, noting extensive literature in drag reduction

and propulsion methods. These works typically considered larger size elements and

much smaller numbers of actuators. Based on these works we make some estimates on

expected behavior and performance of distributed surface actuators and when appro-

priate validate or investigate with benchtop experiments.



Chapter 3

Propulsion: Scaling and Wake

Interactions

The general idea of adding more propulsive devices to a vessel to propel it more swiftly

might well have been discovered before the wheel - simply put, two hands paddling

are better than one. The focus of this section is the aggregate effect of many propellers

operating together. It may seem intuitive that adding propellers with matched engines

to a vessel would increase the total net thrust, but as there is an accompanying power

draw, weight and volume increase (and thus more surface area for drag), the scaling

laws governing multiple propellers is not immediately clear.

Other approaches to increasing output thrust are to increase the speed of rotation of

the propeller (by adding power to turn the motor faster) and increasing the size of the

propeller (which requires increasing the torque provided by the motor). In practice,

aeronautical engineers have implemented combinations of all the above approaches.

For example, most modern aircraft today have two or four very large propellers or jet

engines and fuel is throttled to each engine.

The classic image of powered flight is a vessel with a single large propeller; a he-

licopter with a single rotor or a power boat with single engine and propeller. Instead

of a single large propeller, distributing the propulsion system can lead to a long list of

benefits: dynamic scalability, increased stability, (re)configurability, robustness, fault

tolerance, increased safety for other aerial vehicles, a better balance of verical lift and



directional flight efficiency, reduced structure and less bending moment, noise abate-

ment, simpler maintenance, and cheaper and simpler manufacturing. While this sec-

tion is concerned with the technical performance of using multiple propellers, these

benefits of a distributed propulsion system may outweigh any technical performance

inefficiencies as compared to other approaches.

Distributed Propulsion

"Distributed propulsion" (DP) is a category of powered flight propulsion system for

fixed wing aircraft in which airflows and forces are distributed about a vessel. Its

goal is to increase performance in fuel efficiency, emissions, noise, field length, and

handling performance as compared to the use of a single large engine, jet, or propeller.

DP is typically accomplished by spanwise distribution of partially or fully embedded

multiple small engines or fans across the width of wing. It may instead employ ducting

of exhaust gases along the entire trailing edge of a wing.

Recent analytic and experimental distributed propulsion studies suggest several im-

provements in aircraft performance [13]. These include fuel consumption efficiency,

noise abatement, steep climbing for short take off and landing (STOL), novel con-

trol approaches (in particular eliminating control surfaces for roll, pitch and yaw mo-

ments), and high bypass ratios. It has also been suggested that smaller propulsors will

be cheaper to manufacture and easier to handle during assembly and maintenance. [27].

Any fixed wing aircraft with more than one propulsor can be considered a dis-

tributed propulsion aircraft. However, in common modern usage DP describes a propul-

sion system scheme with distributed exhaust, a large number of distributed engines

(typically fully or partially embedded within the wing), or a large number of distributed

fans with a common core[21]. These implementations are often proposed in conjunc-

tion with blended wing body (BWB) or hybrid wing body (HWB) aircraft.

Implementation approaches include jet flaps, transverse or cross-flow fans (CFF),

multiple small engines (typically gas turbines), or multiple fans driven by a smaller

number of engine cores. In the last case, the power transmission between the fans



and engines may be linked by ducting hot gas 1, mechanical gears[12, 23], or electric

power lines [26].

While some of these concepts were tested on full scale aircraft in the 1960 - 1970's,

such as the Hunting H.126, they were not fielded in production aircraft. More recently,

several full-size and smaller unmanned aerial vehicle (UAV) projects have proposed

DP approaches to meet noise abatement[22], fuel efficiency, and field length goals.

Advancements in materials engineering, cryogenic cooling systems, novel fuels[50]

and high fidelity computational fluid dynamics (CFD) modeling and analysis[10] have

been credited for the renewed interest in DP approaches.

Conformal propulsion

The "conformal propulsion" vision is to replace large propellers with many smaller

propellers, to the extreme of replacing the entire surface of a vessel with propellers.

This allows completely novel airframe and hull designs and missions. Although the

implementation calls for a great number of nodes, each node is identical and simple.

The aggregate effects of a large number of simple nodes can create a complex fluidic

response; we need to understand the thrust output and wake profile for simple propul-

sion blocks when arrayed together. This chapter investigates these effects.

The ideal actuator disk

First we need a basic relationship between the power input and thrust output of a

generic propeller. This relationship depends on the density of the fluid, the propeller's

diameter, geometry, and rotation speed. Our analysis is a mathematical exercise of

scaling trends and not meant to be concerned with specific motor or propeller designs,

so we can use the actuator disk model of an ideal propeller to relate the power and

thrust force with propeller velocity and geometry.

ISome authors note in particular, Winborn, B. 'The ADAM III V/STOL concept', American Institute of
Aeronautics and Astronautics 69-201 (1969)', which I have not been able to obtain.



The historical interest in developing a theory of propellers dates from the industrial

revolution when screws were fitted on to ships. In 1865 Rankine proposed a theoretical

basis for estimating the efficiency of a propelling screw given only the density of fluid

(seawater, in his case) and the coefficient of friction of the fluid against the rotating disk

blades[49], with high agreement from experimental data from two ships. More than

30 years later Froude described the infinitely thin "actuator disk" where "the whole of

the acceleration takes place without the propeller; which last, so far as the water is

concerned, may be regarded simply as an advancing surface of instantaneous change

of pressure"[15]. Froude attributed half the additional speed imparted on the fluid to

occur before the disk and half in the region after while considering the entire aperture

disk to be uniform.

Although the initial application of propellers was hydrodynamic, by the first quarter

of the 1900's the model of the ideal aperture disk generalized for different fluids (in

particular, water of different densities and air) and was refined by viewing each blade

as a separate lifting surface modeled as a wing [11]. Prandtl additionally refined the

model with the lifting line wing theory which incorporated vorticity along the lateral

length of a finite length wing[56]. The generalized actuator disk model is based on

solving the Navier-Stokes or Euler equation with or without finite discretization of the

volume and models continue to be improved for various solution methods.

The ideal actuator disk (see figure 3-1) is a theoretical abstraction used to analyze

a simple flow that produces or is the result of a force on the disk. It is an infinitely

thin device with force uniformly distributed about its area and through which there is

a sudden jump in pressure. Although there is a discontinuous jump in pressure, the

mass crossing the plane of the disk must be conserved so we can use conservation of

momentum methods to relate the thrust force on the disk with the additional speed in

the fluid.



T=APA v+v

VC yc+-- 2

ideal actuator disk

Figure 3-1: Sketch of an ideal actuator disk. r = radius, Po = ambient pressure, AP
= pressure change, T = thrust force, v = velocity

Power and thrust for an ideal actuator disk:

(Rankine-Froude actuator disk theory)

T = pCTA(wr)2 (3.1)
2

and

1
P = -pcpA(wr) 3 , (3.2)

2

where

p is the density of the operating fluid,

CT is the dimensionless thrust coefficient,

cp is the dimensionless power coefficient,

w is angular speed,

r is the propeller radius, and

A is area which is swept out by rotation of the propeller about the motor

shaft.



The programmable surfaces approach to scaling is to use many propellers and mo-

tors of a reasonable size and complexity to increase thrust. Instead of increasing the

rotation speed w or increasing the propeller length r, this approach fixes speed and size

and only varies the number of propulsive units. (For flight controls, the programmable

surface would likely vary propeller speeds within some range of efficient motor opera-

tion. However for this analysis we only want to examine thrust output.)

If there is some thrust force T for a give power input P with one motor-propeller

unit, we would expect that an identical motor-propeller unit will also generate T thrust

for P input. Adding more units does not change the rotation speed (w), propeller

geometry or size. Thus,

P oc T (3.3)

There is no apparent scaling limit for this approach, though there may be practical

operational constraints such as available surface area for flight or landing. Additional

possible scaling limitations include power distribution degradation over long distances

and practical command and control of the flying sheet. Power distribution losses and

aggregate effects of multiple wakes could degrade the performance efficiency. Section

3.2 describes a benchtop experimental validation of the linear scaling and investigation

in these effects.

At the outset it wasn't clear what would happen when we put several spinning

propellers together2 . In section 3.1-3.5 I experimentally investigate,

- Section 3.2: Is there a linear scaling of thrust and power as units are added?

- Section 3.3: Do units positively help or negatively interfere with each other?

- Section 3.4: Is this effect exclusive to the spiral-shaped wakes from propellers?

- Section 3.5: For a set number of units, are there more or less beneficial geomet-

rical configurations, especially in forward flight?

The conclusion from the experiments show that adding more units generate more

2I was unable to obtain a copy of a paper describing numerical simulations showing constructive wake
interaction of multiple counter-rotating blades arranged coaxially and operating at Reynolds number of
200[51].



thrust, so that thrust output grows linearly with power input. This validates our ex-

pected behavior. Nonobviously, closer packing of units so that their wakes overlap

generates more thrust, and as the forward speed increases greatly compared to the

downward speed, a span-wise transverse layout of units generates significantly more

thrust than other geometries.



3.1 Experimental Scaling Investigations

The goal of the benchtop experiments is to validate linear scaling when adding more

propellers and to investigate interference effects of propeller spacing and layout. The

exemplary embodiment of the nodes are a propeller directly coupled to an electric mo-

tor (along with some power electronics, computation, and communications circuitry),

so the scaling law analysis models the same. A single propeller-motor pair is charac-

terized in section C then additional propeller-motors are added in section 3.2. The

interaction of wakes are recorded in section 3.3 and I discover that laying out the

propeller-motor pairs in a line transverse to flight yields greater thrust in section 3.5.

This investigation began by characterizing a single propeller-motor pair. The intent

of the benchtop investigation is to find the aggregate effects of several propeller-motors

working at the same time rather than find, design, or acquire custom propellers. I

matched a commercially available hobby propeller to a commercially available hobby

motor. Because the experiments call for a large number of units, availability, cost, and

simplicity of control were a consideration in selecting the brushed DC motors. Plastic

hobby propellers in smaller diameters are offered in inch increments starting around 2

inches and available in one spin direction. The procedure to select and characterize the

propeller-motor pair is: 1) Search for a reasonably priced, small, high speed brushed

DC motor; 2) Experimentally match the motor with a small selection of commercially

available propellers; 3) Characterize the propeller-motor pair to find the thrust coeffi-

cient (CT) and power coefficient (Cp) of the pair. The motor and propeller used in the

experimental work of this section is described in detail in Appendix C, in particular, see

figure C-5 for a graph of Cp vs CT.

For an experimental investigation of the effects of multiple propellers, I selected a

matched propeller and motor pair (see Appendix C) and mounted seven pairs in various

layout configurations (figure 3-2). The various configurations were intended to isolate

or allow interaction of propeller wakes, and to align the propellers streamwise along

or transverse across the direction of forward flight.

I measured input electrical energy and output thrust for different propeller rotation



speeds to characterize efficiency I also recorded wind velocity profiles to visualize

wake interactions. The configurations are shown in figure 3-2. Wind velocity profiles

were recorded with a hot wire anemometer described in section B.2 and rotational

speed was measured using a non-contact tachometer described in section B.3.

To evaluate the effects of different layout geometries, I selected a few layouts which

were unambiguously different, near the extremes of their axes of configuration. Fig-

ure 3-2 shows the test geometries created from seven (7) propeller-motor units. A

symmetric layout are the hexes in Figure la. While the frames are hexagonal, the pro-

pellers trace out circles which are packed into a larger circle. For clarity I refer to this

test shape as a hexagon or hex but it should be understood that as the number of units

grow in this layout the conglomerate shape comes closer to a circle. The units in Figure

la-1 have minimal spacing, just enough to prevent propellers from hitting each other,

which in Figure la-2 the spacing is increased significant by more than the diameter of

one propeller. This pair of geometries will allow us to investigate the coupled effects

from adjacent propellers.

The pair of layouts in Figure 3-2b maintain the same uniform spacing as the smaller

hex in Figure 3-2a-1 but the units are arranged so the composite object is transverse

to the flow (ie, maximally "wide and short", or streamwise (ie, maximally "skinny and

long". This pair is used to gain intuition on the effects of frontal area exposed in the

direction of flight.



a) tightly vs. loosely packed hexes

*

b) streamwise vs. transverse lines

U
3-2: Test geometries. a) Propeller centers are laid out as if inscribed in a larger
b) Propellers are arranged in a line.

Figure
circle.



3.2 Linear scaling in hover

The effect of adding more units is comparable to an example with helium balloons.

If one helium balloon provides L lifting force, adding another identical balloon is ex-

pected to result in a total of 2 x L lifting force. Thus, the expected scaling is nP = nL.

Propeller-motor units are expected to add similarly, as discussed in section 3. If power

to each motor is held constant, we should observe equal thrust increments as new

units are added. Interaction effects of neighboring propellers are not yet considered in

the following experimental validation of a linear scaling law. The results in table 3.1

summarize the findings as units are added. They are consistent with linear scaling.

With the propellers spaced more than 1 propeller diameter apart, each motor was

supplied with constant power. The total average thrust, thrust per watt, and thrust per

unit are tabularized in Table 3.1. Inspecting the last two columns shows that there is a

linear scaling effect on thrust with the number of units added and power expended.

Number Average Average
of Total Average Thrust (g) Thrust (g)

Units Power (W) Thrust (g) per Watt per unit
1 4.5 23 5.1 23
2 9.0 48 5.3 24
3 13.5 72 5.3 24
4 18.0 97 5.4 24.5
5 22.5 121 5.4 24.2
6 27.0 144 5.3 24
7 31.5 163 5.3 23.3

Table 3.1: Linear scaling of thrust with number of units added and power expended.

This experiment was repeated at several speeds. Propellers are noisy devices and thrust

readings could vary as much as a couple of grams. Small manufacturing differences

among the motors are to be expected which vary motor performance, in particular

the resulting RPM for a given voltage level. Despite these sources of error, the plots in

figure 3-3 show the addition of propeller-motor units is consistent with a linear scaling.
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Figure 3-3: The addition of propeller-motor units at several speeds is consistent with
a linear scaling. The numbers indicate the number of propeller-motor units active.
Reynolds number is calculated using average propeller chord.
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3.3 Interaction of propeller wakes

Although wind speed is fastest directly in front of a fan, wind is created outside of the

imaginary cylinder projected from the circle traced out by the propeller tips. If I have

multiple propellers, do I want to locate them far enough apart so that their wakes don't

interact, or instead place the propellers closer together so that their wakes combine?

Measuring wind profiles of tightly and loosely packed hexes and comparing their

thrust outputs reveals if either configuration is more effective. Figure 3-4 shows the

velocity profiles of both hexes for a constant power per motor. The profiles shown were

captured at a distance 11.25 inches away from the centerline of the propeller. They are

a cross-section (as indicated by the dotted line on the hex-icons) and only measure

the normal component of the wind generated; that is, the speed of air traveling in the

direction perpendicular to the plane of the propeller. The velocity data was captured

using a commercial hot wire anemometer mounted on a track so that the sensor was

cantilevered above the propeller and could be accurately positioned in a plane paral-

lel to the propeller. For more details on the instrumentation setup and experimental

procedures, see appendix B.

Comparing figure 3-4b and figure 3-4c it is evident that a tightly packed arrange-

ment leads to a more uniform velocity profile with a single broad peak while the loosely

packed arrangement resulted in several distinct peaks. The same curves are overlaid

for comparison in figure 3-5. We might suspect that there are shearing losses in the

slower regions between propellers in the loosely packed hex (figure 3-4c) where the

differences in fluid speed result in dissipative losses rather than contribute to useful

work.

We now experimentally compare the thrust output of a tightly packed geometry to

a loosely packed geometry. The two array configurations were attached to a scale that

measured with a resolution of 0.1 grams. The motors and propellers were mounted

such that they pushed down onto the table and the motors were on the intake side of

the propellers. The assembly was mounted more than 3 propeller diameters from the
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Figure 3-4: Combined effects of multiple units. (a) Velocity profile of one propeller. (b)
Gray circles are profiles of propellers running one at a time. Yellow curve is the velocity
profile with all motors on in a tight packing. (c) Velocity profile of all propellers run-
ning at once in a loose packing. Figure 3-5 overlays the yellow highlighted aggregate
velocity profiles of (b) and (c).
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Figure 3-5: Tightly packed (orange diamonds) and loosely packed (blue circles) profiles
overlaid for comparison. Both curves are with all motors on. The short lines on the
x-axis indicate x-position of the propellers. Instrumentation and procedures for data
capture are described in section B.2
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Figure 3-6: Thrust generated by the loosely and tightly packed arrays

surface of the scale so there would be no interference effects from the air near the scale

plate. As motors were added, they were supplied with equal power (for several sets of

power values) and the resulting RPM, total thrust, and total power consumption were

recorded. Figure 3-6 shows that the loosely packed configuration yields less thrust

than the tightly packed configuration and the difference grows as the number of units

increase.



3.4 Interaction of jet wakes

In the previous section we found that overlapping wakes from propellers spinning in

the same direction produced a beneficial aggregate effect, that is, more thrust was

produced for the same input power. With the propellers rotating in the same direction

I had been prepared for the opposite because at any point of overlap, the swirling wakes

would be moving in opposing directions. On the other hand, as occasionally witnessed

with tornadoes, two nearly overlapping spirals could be expected to form into one

tighter spiral. I wondered if the spiral shaped "swirl" of the wake was a necessary

component of this beneficial interaction. To investigate this, I used jets which have

wakes without a rotation about the axis of ejection.

Water streaming out of a garden hose is an example of a continuous jet that might

be used for reactionary propulsion. Fluid is supplied from outside of and added to

the working system. In contrast, a synthetic jet is formed entirely from the working

fluid of the flow system. Fluid is injested into a cavity then expelled quickly through

a small orifice. With sufficient velocity, the ejected fluid forms a donut-shaped vortex

ring. Interactions of a train of vortices create a jet by entraining surrounding fluid

into the jet flow[20, 52]. Because the working fluid is taken from the system rather

than supplied externally, these devices are also known as zero net mass flux (ZNMF)

actuators.

There are many natural examples of synthetic jets among marine life, most notably

the salp which ingest water at one end of its body and ejects it through an orifice at

an opposite end. A recent doctoral thesis studied four species of salps and found that

although salps exhibit a "fear" response by moving rapidly away from a threat, the jets

were likely evolved for feeding rather than locomotion[54]. This may explain why the

inlet and outlet orifices are distinct whereas in most engineered synthetic jets a single

orifice is used for both injestion and expulsion of the fluid. This arrangement removes

the need for valves to close off the inlet or outlet during the appropriate cycle. Without

the requirement to feed, a synthetic jet employs only one orifice through which fluid is

both injested and expelled, further simplifying the overall design. A long, slow intake



followed by a rapid sudden expulsion generates a net movement in one direction.

Synthetic jets have been an area of interest in recent studies in conjunction with

electrically controlled piezoelectric actuators, simple chambers and orifices[59, 1, 48]

for flow separation and drag control. The small displacements and high frequencies

are well suited for boundary layer manipulation. In contrast we wanted to use the

jets for propulsion. Our experiments with using solenoids to injest and quickly ex-

pel large quantities of fluids were of mixed success. The large forces were capable of

creating well formed vortex rings that travelled a great distance. However the electro-

dynamic device, consisting of a cylindrical magnet in a non-conductive, non-magnetic

tube about which an insulated wire was wound, has a corresponding large displace-

ment of the magnet (a large mass) and heat generation in the windings (driving the

need to use a high current power supply). This was also noted in Cattafesta's review of

ZNMF actuators[8].

Ocean biologists had empirically shown that a larger number of smaller jets in a

train created more net thrust than expelling the same total volume in a single pulse,

(though the larger number of pulses required more total energy). In part this is due to

the vortex rings encountering the still-moving tube of fluid in the wake of the previous

ring. Because this fluid is moving in the same the direction of desired motion, it is as if

the relative speed difference is smaller, so less energy is lost at the outside boundary of

the ring[30].

The intent of our experiment was to construct several synthetic jets and observe the

effects of arranging them with vortex rings overlapping as well as isolated. The outer

diameter of the vortex ring is larger than the orifice diameter required to create it; this

and the nature of the motive force allowed the test object to be a single electromag-

netic driver expelling fluid through a wall with multiple orifices. The final test object

used employed an audio speaker driven by a digitally controlled periodic ramp-shaped

electronic signal. Constructing and characterizing the synthetic jets with single and

multiple apertures is described in detail in Appendix D.

A side by side comparison of very tightly packed apertures and very widely spaced

apertures showed that a single jet is formed in the tightly packed case and the jet



travels a larger distance before its energy is dissipated. Both synthetic jet test objects

were driven simultaneously in parallel and because the number and size of orifices is

the same, the estimated backpressure, drag, and other frictional forces are nominally

equal.

(b) Tightly packed jets (c) Loosely packed jets

Figure 3-7: Side by side comparison of tight vs loosely packed jets
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3.5 Layout Improves Thrust Generated in Forward Flight

When we began we couldn't help but think of the programmable surface as a 2D plane.

A sheet of actuators, perhaps floppy, either passing fluid about on its surface as a fluid

conveyor belt, or carrying a load about through the fluid as if a magic flying carpet.

Changing the interconnection geometry among cells would create new, different struc-

tures. If "2D" connections on a grid make a programmable sheet, the "1D" connections

(eg, connections only to "left" and "right" neighboors) can make a string or chain and

"3D" might make (hollow) volumes.

The ball is an extreme limit of a programmable surface covering all or part of the

exterior of a craft, such as an aircraft or marine vessel. Or, instead, the programmable

surface may comprise the craft itself, and the craft may lack a conventional fuselage

or wings (in the case of an aircraft) or hull (in the case of a ship). In this section,

I experimentally show that the configuration of the propellers can positively improve

performance in different enviroments. For example, we may easily imagine that we

want our flyer to translate position, ie, fly "forward" in addition to "hover".

In forward flight, an incoming air stream provides additional mass that the pro-

pellers can interact with. If deflection angles are small, mass flow is dominated by the

horizontal component. This suggests that a geometry which is maximally transverse to

the incoming air flow will be more effective because there is more mass presented to

interact with.

To investigate this in the lab, I constructed the widest and thinnest shapes with

respect to the incoming air flow using the same number of propeller-motor nodes.

These were in actuality the same test object, figure 3-2b, aligned streamwise along or

transverse across the incoming wind. At a fixed power per motor, these units generated

a velocity profile whose maximum, v, I recorded approximately 1 diameter from the

plane of the propeller. To simulate forward flight, I fixed the test object on stand which

was then mounted to a scale, and created an incoming wind with speed U with a wall

of fans a great distance away from the test object. The propeller-motor units were tilted

between 1 and 2 degrees away from the wind.



Figure 3-9: Forward flight is simulated by providing a wind speed U. The wind gen-
erated by the propeller-motor unit v is measured 1 propeller diameter away. The pro-
peller is tilted 1.5-2 degrees away from the wind.

Figure 3-9 is a sketch of the system. Note that the propeller-motor unit is installed

so that it is pushing down, a very convenient laboratory orientation. Data was recorded

during three system states: wind only, propeller only, and both wind and propeller.

wind

wake
TT TTTTTTTTTTITiTTiTITiiTTTT

Figure 3-10: Photographs of the orientations with respect to the fan wall. In the course
of the experiment, the actual fan wall was twice as large in both length and height
dimensions and placed farther away from the test object. The handheld anemometer
was used to verify that a uniform wind was presented to the test object.

The results in table 3.2 are graphed in Figure 3-12 with ratio of thrust (T) with

wind vs. thrust without wind plotted versus the ratio of U/v. As the forward speed

T\f U=o
Tu'=o400
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Figure 3-11: Performance of the line compared to the hexes.
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Orientation

no wind
(U = 0)

Tnowind (g)

with

U / v

wind

Twind (g)

relative improvement
in thrust

Twind / To wind
hex 7 4.2 12 1.7
hex 12 2.7 18 1.5
hex 20 1.9 29 1.5
hex 37 1.3 45 1.2

streamwise 6 4.2 8 1.3
streamwise 20 1.9 20 1.0
streamwise 38 1.3 42 1.1
transverse
transverse
transverse
transverse
transverse

4.2
2.7
1.9
1.3
1.1

4
1.8
1.3
1.2
1.1

Table 3.2: Effect of geometry and orientation in forward flight.

increases greatly compared to the downward speed, the transverse configuration does

show significant benefit. When hovering or moving slowly, the hex was somewhat more

productive than the lines.
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3.6 Scaling summary

In the preceding sections I've experimentally verified that more propeller-motor units

packed closer together generate more thrust for the same power (section 3.3 and 3.4),

and as the forward speed increases greatly compared to the downward speed, a con-

figuration transverse to the direction of flight can have significant benefit (section 3.5).

When hovering or moving slowly, the symmetric tightly packed hex shape was some-

what more productive than the line of propellers, suggesting a dynamically reconfig-

urable shape to accommodate both efficient hovering and high speed forward flight.

In benchtop data collection I struggled with the effect of motor temperature on RPM

and thus the thrust output produced by the propeller. Since coil resistance increases

as temperature increases, the RPM decreases over time even if the input voltage is

constant (see motor voltage constant equation C.1). As experimentation continued,

the motors seemed to degrade permanently, ie, pausing to allow them to cool before

resuming did not restore max speed. The most likely explanation for this is that low

cost ferrite magnetic material lose their magnetic properties at high temperatures. Both

of the possible contributors to motor heating, mechanical bearing loss and magnetic

hysteresis loss easily resulting in temperatures over 80 C which is the when permanent

damage occurs to low end rare earth magnets.



Chapter 4

Drag: Boundary Layer Control

This chapter introduces the use of programmable surfaces to dynamically alter the flow

around an object by moving the surface of an object creates a wall velocity that is de-

coupled from the bulk motion of the entire object. Programmable momentum transfer

to the fluid through shear transport is a largely unexplored "synthetic hydrodynamic"

regime which may lead to energy savings, drag reduction, novel vessel form factors,

noise reduction, energy harvesting, and the ability to create flow fields which are not

naturally occurring.

Technology exists in which boundary layers are manipulated primarily for the pur-

pose of drag reduction. These are often passive approaches such as coatings and paints

or textures like golf ball dimples. A well known active approach is to inject gas or

gas-liquid mixtures into the boundary layer between the surface and fluid in order to

lubricate the shearing interaction between the viscous fluid and surface. The gas may

be moved through the surface in a variety of ways, including porous membranes, slots,

and arrays of nozzles. However, this approach relies on bulk response among the fluid,

solid, and injected layer and is not finely controllable at various locations of the surface,

in particular along the streamwise length of the object. Nor is it finely controllable in

time. It also suffers from manufacturing and practical operational challenges. Another

actively driven method with similar limitations is to suck the boundary layer through a

porous surface into the object so that the laminar boundary layer does not get too thick

along the streamwise direction and separate. Handling and disposing of the fluid has



been the biggest challenge with this approach.

In contrast, programmable surfaces can create a dynamic, programmably controlled

boundary layer. In "output" configuration, applications involving boundary layer ma-

nipulation include vessel propulsion, drag reduction, steering control, acoustical stealth,

and synthetic profiles. In "input" configuration, applications include energy generation

from low-head water bodies, stacked arrays of wind turbines, or sides of buildings, and

regenerative energy recovery from vessel braking. Hybrid surfaces may be constructed

to serve both modes.

4.1 Flow Control

When a free stream fluid moves past a solid surface the fluid's flow is distorted. Al-

though the immediate distortion is very close to the surface, fluidic interactions within

and beyond this thin, viscous boundary layer may induce large scale effects in the flow

pattern. The nature of these large scale effects are dependent on a number of factors

which include fluidic properties such as viscosity and density, surface properties such

as surface roughness and geometry, and relative velocities of all components.

A particular effect of interest is the resulting fluid resistance or drag. Drag forces

are those that oppose the motion of the fluid due to the object or vice versa depending

on the observer's frame of reference. Drag forces generally represent inefficiencies in

a system, ie, power lost to drag forces; however, dynamically controllable drag forces

can be manipulated to produce braking or steering.

General approaches to manipulating the boundary layer is often termed fluid flow

control. Methods for flow control encompass a large range of approaches including

improved geometries and materials, the use of coatings and surface treatments, and

various kinds of actively controlled actuators. Implementation of these approaches

engages a wide range of disciplines in engineering, chemistry and materials sciences,

mathematics, and controls. In all cases, the goal has been to suppress or eliminate

turbulent flows near the surface of the object.

A significant portion of interest in flow control is the concerned with the detachment



of boundary layer from a bounding surface or wall. When this occurs, laminar flow

become turbulent. The point (or region) of detachment is called the separation point.

In most cases, delaying separation (moving the separation point streamwise aft) results

in improved performance such as increase lift or reduced drag. These approaches are

often termed separation control.

Drag reduction research has evolved in tandem with the development of water and

air vessels which themselves tracked closely with war-time and peace-time consumer

interests. Motivations have shifted from reducing uncomfortable vessel-wide vibrations

in passenger steamships, to low acoustic signatures in submarines to evade detection,

to fuel efficient and low noise commercial passenger aircraft. Drag reduction affects

both performance (in the sense of top achievable speeds) as well as efficiency (from

the perspective of the expense of fuel for the prime mover).

Several reviews have been made in this area, beginning with Goldstein in 1938 1.

Early reviews of drag reduction methods are presented as a component of fluid mechan-

ics following Prandtl's work in the early 1900's. The literature notes in particular Gold-

stein (1938), Lachmann (1961), Rosenhead (1966), Schlichting (1968), and Change

(1970). Flow control methods of drag reduction research in the 1970s and 1980s were

primarily concentrated in passive methods because of the relative ease of implementa-

tion and high payoffs[47]. By the 1990's reviews by Gad-el-Hak[16], Modi[38], and

Pack[47] focused on active controls specifically while passive approaches continued to

dominate drag reduction uses due to difficulties encountered in large scale employment

of actuators with moving parts and complex signaling. In 2001 an Australian review

reported that turbulent control research in the USA, Russia, Europe, and to a lesser

extent Japan achieved up to 80% drag reduction by employing polymers, surfactants,

coatings, or bulk injection of microbubbles[57]. The most recent review of moving

surface actuators in 2011 by Cattafesta[8] found piezoelectric composite flaps and

electroactive dimples to be the most commonly used active control actuators among a

variety of applications. These technologies require the smallest mechanical displace-

ments among active control approaches.

'Reported by Chew and Modi; I have been unable to retrieve Goldstein's review.



Active control of fluid flow have been investigated in America after the end of World

War II; some full scale (successful) experiments were performed in the 1960's and

1970's, followed by a relative lull in the field for several decades. The advent of small

sized digitally controlled electronic actuators and new materials reawakened interest in

dynamic flow control using actively driven elements, in particular for weight reduction

and radar signature reduction in high-performance aircraft. However, as noted by Pack

[47], while most of these methods have been demonstrated to be effective, they have

generally not been employed due to system concerns such as actuator robustness and

system control complexity.

In a 2011 review Cattafesta organizes actuator types in to four functional classes.

[8], They are: fluidic, moving object/surface, plasma, and other (a category he in-

tended to include electromagnetic and magnetohydrodynamic approaches which were

not reviewed). In considering actuators for programmable surfaces, the moving surface

approach provides a reversible method of momentum transfer between fluid and solid.

4.2 Moving Surface

Momentum transport with moving surfaces is primarily accomplished through fric-

tional, dragging force in the boundary layer. When the surface moves, the a thin layer

of fluid closest to the surface is dragged along with it. The Tesla boundary layer pump

operates on this principle, using a stack a large number of finely spaced disks to max-

imize surface area.2 The inverse, Tesla "bladeless" turbines are commonly used today

to recover energy from the smoke stacks and cooling towers of large power plants and

factories.

The simplest moving surface is a rotating cylinder and the literature is rich with sim-

ulations, numerical studies, and empirical work with cylinders. The rotating cylinder

develops fluid circulation, or a flux of vorticity In the flow around the rotating cylinder,
2A common modem use is in oil - water separating skimmers where a disk or belt is partially sub-

merged in water on the surface of which there is a film of oil. As the disk is rotated, the oil clings to
the surface of the disk, lifted away from the water, and scraped off by a blade before that section of disk
returns to the water.



streamlines are squeezed closer together and have higher velocity on the side of the

cylinder moving in the same direction as the flow. The opposite half, which is moving

against the flow, slows the streamlines which are farther apart. Like any object with

circulation From Bernoulli's equation, there is a higher pressure on the side with the

flow than against the flow. A resulting force, known as the Magnus effect after Heinrich

Magnus, is generated towards the side moving in the same direction as the flow. The

relationship between the "lifting" force (depending on direction) generated and the

circulation was independently generalized by W M. Kutta in 1902 and N. Joukowski in

1906.[58]

The resulting force of the Magnus effect alone (it is responsible for "curve balls" in

baseball and ball "bending" in soccer) has been investigated for use as a motive force,

most notably by Anton Flettner who constructed and successfully sailed a transatlantic

schooner with two large vertical rotating cylinders driven by a diesel engine. Several

other devices were proposed and some constructed that utilized the "Flettner rotor" in-

cluding bomblets and heavier-than-air airplanes but the increased relative complexity

of driving a large rotating mass is not justified by a corresponding increase in per-

formance as compared to driving a propeller and using aerodynamic wings as lifting

surfaces. A series of 1959 NASA Langley wind-tunnel experiments on circular cylin-

ders (with rocket engines in mind) at subsonic and Mach 1.9 speeds (corresponding

to Reynolds numbers from 355,000 to 1,600,000) found that lift could be generated

throughout the range of Mach numbers but decreased with higher Mach numbers as

the drag of the circular cylinder increased rapidly[31].

If the anti-flow portion of the cylinder is shielded from the flow then fluid "above"

a wing can be speeded up and directed "down" to produce greater lift, especially if

employed in the slip stream of a main propeller[5]. This is of particular interest to

short and vertical take-off lift (S/VTOL) aircraft. One of the earliest examples of the use

of rotating cylinders in S/VTOL aircraft was by Alvarez-Calderon[3, 4] who in 1961-

1965 described a rotating cylinder near the trailing edge of a wing on a conventional

single wing aircraft. A pusher propeller was attached to the streamwise aft end of



the wing and could be rotated downward to direct flow downward'. This design was

improved on by MacKay[32] for tiltrotor aircraft use by rearranging the rotor to be

streamwise ahead of the rotating cylinder so that high speed air would be directed

over the cylinder. Mackay notes in a 1993 patent application that NASA tests showed

rotation speeds between 6,000 RPM and 9,700 RPM was sufficient to prevent boundary

layer separation on the airfoil surfaces. Mackay4 was previously involved in 1972-1973

NASA flight tests of an North American Rockwell YOV-10 fixed wing aircraft modified

with a rotating cylinder in the slipstream of the propellers[9] (see figure 4-1). In those

series of flights, a high lift coefficient was found when during cylinder operation.

Figure 1.

Figure 4-1: NASA / Rockwell YOV-10 aircraft with trailing edge rotating cylinder[9].

The field of experimental investigation in using rotating cylinders partially shielded

by a vessel's structure goes quiet until around 1989. Led by V J. Modi's research group

at the University of British Columbia and subsequent partnerships with Chew at the

National University of Singapore, the 1990's was a prolific decade of rollers of var-

3Modi[39] reports that this system was flight tested by the Aeronautics Division of the Universidad
Nacional de Ingenieria in Lima, Peru, but I was unable to obtain any references that describe these tests.

4A 1973 NASA report spelled his name McKay, though the 1972 report and the 1993 patents show
MacKay.



ious sizes installed in various configurations, operating in various fluids and speeds.

Target applications spanned leading and trailing edges of airplane wings[39, 40, 36,

44, 42] to the leading edges of rectangular container trucks and ships[2, 43, 36, 45],

buildings[45, 29, 41] and even other cylinders[35]. In all cases, the wake was found

improved by the use of rotating cylinders and the separation point moved downstream.

Of note, in a 2002 experiment on a rectangular barge-like model in water, Modi

found a 24% reduction in drag with the use of two vertical rollers installed at the front

leading corners of barge. The cylinders were driven by electric motors and the drag

savings corresponded to an 8 Watt reduction in power for every 1 Watt expended to

rotate the cylinders [37]. See figure 4-2 for a diagram of Modi's structure. With Munshi,

Modi had previously visualized similar structures; see figure 4-3.
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Fg. 21 Diagram showing test set-up during the low-lank experiments.

Figure 4-2: Modi's barge-like structure with rotating vertical cylinders at the leading
corners[37].



S.R. Munshi et al. /J. Wind Eng. Ind. Aerodyn. 79 (1999) 37-60

Fig. 16. Effect of momentum injection on the characteristic features of the wake and the shed vortex system

associated with the rectangular prism (AR = 0.5) as observed during the water channel flow visualization

study.

Figure 4-3: Munshi's flow visualization of a rectangular prism with rotating
cylinders[45].



4.3 Programmable Moving Surfaces

The goal of moving surface boundary layer (MSBL) control is to physically move the

solid surface to create a wall velocity which may reduce or increase the difference

with the velocity of the free stream fluid. Unlike previous MSBL approaches which

employed large rotating cylinders or belts to move large parts of a surface at once, a

programmable surface is divided into a multiplicity of small cells called ergos5. Each

ergo interacts with a small region of fluid nearest its surface. Because the fluid is a

continuum, the combined effect of individual ergos working together is to alter the

apparent stream lines of a fluid flowing about the solid object.

The entire wetted surface of an air or ocean-going vessel can be employed for re-

ducing drag and generating propulsion by covering the surface with driven cells. Drag

reduction with programmable surfaces is based on expending energy on the surface to

reduce or eliminate energy consumed by frictional losses. Internal losses of the ergos,

such as bearings friction and flow recirculation must be kept small. While there are

many design options to address these losses, the worst case outcome is that there is

no net energy savings. However programmable surfaces will still have mobility ap-

plications, including effecting control without control surfaces, reducing noise, and

expanding performance envelopes.

A programmable surface may be also used to control the motion of a vessel. Con-

trollability is influenced by the thrust-to-weight ratio and fraction of flight surfaces used

for control. Conventional control surfaces change the profile of the aerodynamic wing

or rudders by physically deforming, moving, or changing the geometry. If payload aim-

ing is involved, a stand-alone pointing system is often employed to make course path

solutions simpler. The surface of a vessel may instead be covered with individually

controllable cells that allow for fine-grained complex flows surrounding the vessel. In

this approach, the entire external surface may be involved in small manipulations of

the fluid flow and pressures immediately adjacent to the walls. A full range of bulk

control motions can be accomplished by driving cells independently; a few are shown

5Ergo is from erg, a unit of work, and Lego, a modular construction toy



in figure 4-4. Additionally, by mismatching "top" and "bottom" surface velocities in the

presence of fluid flow, a net lifting force is generated which can be used for additional

non-traditional controls.

up
forward clockwise rotation

forward motion on top
top reverse motion on bottom

port star rd counterclockwise rotation
reverse motion on top
forward motion on bottom

--- - ergo rotors

thrust in forward direction flipping about horizontal axis twisting about vertical axis

Figure 4-4: Individually addressable moving surface regions can be used to control the
motion of a vessel.

Another consequence of active manipulation of the boundary layer is the ability to

generate synthetic geometries, that is, to project a boundary layer shell into the flow

and appear to be a different shape to the flow. Turned inward, these surfaces can be

used to create flows with novel flow profiles.

"Hello World" - propulsion and controls with an underwater double

belt

Achieving propulsion will require adequate momentum transfer through shear trans-

port from the surface. The Reynolds numbers required for this may limit thrust to

water or granular media, rather than air. To reassure ourselves that there is sufficient

momentum transfer through shear transport in the boundary layer, I constructed a test

object which had smooth moving belts on the top and bottom (or left and right) sides.



The belts were driven by spinning rollers which were powered by electric motors. A

60 fps high speed camera recorded belt movement to determine the velocity of the

belt. With this "underwater double belt sander" I verified that 1) moving the belts was

sufficient to propel the vehicle and 2) mismatching the belt speeds caused the vehicle

to turn.

Figure 4-5: Underwater test object with moving surfaces.

Figure 4-6: Moving belts for propulsion and steering.

The construction used readily available steel shafts and bearings which quickly

rusted in the water tank. The rusting moving elements on the test vehicle contributed

additional power loss due to friction and was not suitable for future quantitative ex-

perimentation and was retired after demonstrating forward/reverse propulsion as well

as turns.



4.4 Modeling, Prediction, and Numerical Simulation

To develop control laws that can be used in full-scale applications it is necesssary to

understand the temporal and spatial evolution of the flow response to active control.

The research of Joslin[24, 25] in flow control theory have demonstrated that instability

suppression without a priori knowledge of the disturbance is possible. However, the

methodology requires "sensing" of the system (which is necessarily beyond the imme-

diate reach of the controllable object) and system coefficients must be solved for all

space and all time. In contrast, programmable surfaces are based on cellular automata

and the idea of local neighboorhood sensing, computation, and actuation.

In nearly all reviews, it was noted that 3 dimensional analytical solutions have

proven to be particularly difficult and in the case of predictive computer aided finite ele-

ment modelling (FEM) inaccurate outside of a narrow range. This is important because

a mathematical control model is required in order to fully control a dynamic bound-

ary layer. Pack and Joslin report in a 1998 review of activities at NASA Langley that

solutions obtained with 3 dimensional direct numerical simulation and control theory

methodology yielded desired control features without prior knowledge of the forced

instability[47]. However, they note an enormous quantity of coefficients necessary to

represent the entire system state at all times and all spaces and long computation times

due to the iterative solver.

In Gad-el-Hak's 1991 review is a discussion of the difficulties of determining an

exact, rigorous analytical model for separation of unsteady 3 dimensional flows despite

a large body of qualitative flow visualization data collected over many decades. [16]

Active control design tools and performance scaling laws for use in full-scale ap-

plications will require the construction of computational fluid dynamics (CFD) simula-

tions. Although I constructed some crude and simple simulations in COMSOL, serious

CFD was outside the scope of this thesis that was driven by experiments.

A small number of exemplary embodiments of the cells were constructed for eval-

uation. Ergo performance was investigated in a recirculating water tunnel using seed

particle flow visualization techniques. Future work required to characterize the behav-



ior of the cells is to align CFD results and experimental results so that variations of the

flow patterns and geometries can be simulated and predicted by the design tool.

Ultimately, CFD should be used to resolve the boundary layer flow along an ergo

array as well as the flow evolution downstream from the array, then lift and drag

forces would be calculated directly by integrating the simulated flow pressure and shear

stress over the test section surface. The calculated forces along with the flow-field

retrieved for certain planes from the simulation results would be compared with their

counterparts from the experimental results.
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Chapter 5

Control and Programming:

Asynchronous Thrust Array

This chapter considers the methods of programming a surface made of a large number

of discrete identical nodes. It is clear that a conventional centralized approach, which

essentially wires all sensor inputs and actuator outputs to a central computation unit,

would not be suitable for the programmable surface described in this research because

there may be thousands or tens of thousands (or more) units. Each time the configu-

ration changes, the controller's physical interface as well as software would need to be

reconfigured as well.

To maintain inherent scalability, we have two important requirements for the inter-

operation of the nodes: 1) each node is self-contained, such that a special controller is

not needed whenever the number or configuration of parts change, and 2) nodes are

capable of coordinating with other nodes so that one may act on sensor information

gathered by another node.



5.1 Approach: Asynchronous Thrust Array

A programmable surface will have thousands to millions of degrees of freedom which

would be impractical to implement with traditional dynamic behavior control systems.

Computationally, traditional control systems are created with a systems viewpoint.

Feedback parameters are assumed to be available wherever they are needed in a calcu-

lation, i.e., global parameters available to all nodes at any time. Mirroring this system

frame of reference, the physical implementation of a control loop generally takes the

form of a central processor that is connected to all sensor inputs and all output actua-

tors, and stores intermediate values in local memory. Although computational capacity

per time and space increase each year, as the degrees of freedom increase the number

of coefficients that must be computed and stored become intractable. For very large

vessels, simple signal delay times from one end of vessel to a centrally located "brain"

would be too long to compute or signal the proper actuator response.

To program the surface of a 747 or an oil tanker will require control that scales

with the object being controlled. Distributing computation physically to local nodes

limits the use of conventional control algorithms and increases complexity at each

node. While it requires a radically different control algorithm, distributed control can

scale arbitrarily beyond the limits of conventionally centrally wired systems. Wiring

for avionics is already a major challenge despite the comparatively limited number of

actuators. An important consequence of distributed control is redundancy and system

reliability.

A specialized area of programmable materials research has been focused on their

organization and control, in short, the program part of programmable matter. Because

the number of individual parts is very large, amorphous computing assumes that the or-

ganization and topology of the material will be irregular, unknown, and time-varying

(in particular, individual parts may break). A 2008 symposium brought together vari-

ous approaches under the name Avagadro Scale Computation. The name recognizes that

a variety of computing systems are approaching a limit of thermodynamic complexity,

in which the number of information-bearing degrees of freedom becomes comparable



to the number of physical ones. At this point it is no longer possible to separate the

physical and computational descriptions of enormously complex computers.

In order to program programmable surfaces we also need a high level spatial pro-

gramming language to describe surface motions. From amorphous computing research,

Bachrach created a high level language for motion programming where each node ex-

ecutes the same program built out of spatial primitives such as synchronized time,

gradients, pointwise operators, and conditionals [6]. Flo1 allows the designer to proce-

durally abstraction surface motion as high level declarative programs of systems goals

solved by online optimization. These programs can be implemented in the surface

cells by mapping a primal-dual decomposition onto a graph of the cells and their links,

with local message-passing of state and constraints variables performing the global

optimization of the desired system motion.

The interconnection and routing of the programmable surface is inspired by work

on RALA (Reconfigurable Asynchronous Logic Automata) [17, 18]. RALA is a program-

ming model that ties the spatial structure of programs to the spatial structure of the

computer hardware. RALA uses a 2D or 3D grid of cells that perform logical operations

on tokens that are asynchronously passed between neighbors. The spatial structure

of the cells ensures that they can be embedded in the surface to provide more com-

putation for larger surfaces. Local communication avoids global communication buses

which would need to scale their bandwidth to the number of cells. Asynchronous token

passing allows synchronization locally as needed for consistency in computations with-

out maintaining a global clock. By adjusting the ratio of surface cells to RALA cells, an

adjustable amount of computation required for different applications is possible.

Control programs developed in RALA can be used to directly synthesize non-reconfigurable

hardware that performs the same function with only a few dozen transistors per cell.

Because the spatial structure of a RALA program is directly mapped to spatial structures

in hardware we can use a small library of cells that perform the fixed functions and di-

rectly map them to grid locations with no additional synthesis or compilation. The

primary consequence of this for programmable surfaces is that the program is portable

'Flo was previously named Proto.



across manufacturing technology lines changes during a development cycle or system

lifetime. Second generation hardware would, at least from a programming perspective,

interoperate seamlessly with previous generations.

5.2 Simulation of a minimal distributed control law us-

ing Flo

As part of the Center for Bits and Atoms' work in DARPAs InfoChemistry program, a

simulation of a distributed control law was created to show that global effects could

be achieved with only near-neighboor local communications and distributed local-only

actuator control. The simulation can be thought of as a "flying carpet" comprised of

individual thrust nodes. Collectivelly, the goal of the flying carpet is to remain flat and

aloft at a constant altitude.

Flo (Proto) is a high level language for motion programming where every node

executes same program. Nodes were tied together to their neighbors on a square grid

and given one dimension of control - their own thrust. A "greedy controller" algorithm

required each node to strive to maintain its altitude despite external perturbations such

as wind or other nodes failing and becoming dead weight.

In Flo, each aperture node is represented as a disc with four attachment arms stick-

ing out at right angles from each other in the plane of the aperture. The arms are

rigid rods attached to each node as if with a servo, or driveable, multi-direction hinge.

Normal to the plane of the aperture is the thrusting force, as if the cylinder was a

rocket engine tube. Nodes are able to control the magnitude but not direction of their

thrusting force, and the force is uniform and perfect (meaning no dissipation losses or

rotational torques). Each node has a sensor which constantly reports absolute altitude.

Bachrach coded the nodes' behavior and simulated their interaction in what he calls

a "cartoon physics" world. By itself, a node wanting to achieve a particular altitude

adjusts the magnitude of its force vector, slowly overcoming the effects of gravity, until

it reaches the target altitude. It will have some force needed to maintain its altitude



which is equal to its weight. If an additional mass is attached to this node, it will

perhaps initially drop until it has a chance to add enough force to counter the new

total weight. This additional mass might be a neighboring node failing and becoming

dead mass, not contributing to lifting the collective assembly. The additional force

might be transient, such as the force of wind pushing up or down on the sheet.

Figure 5-1: The Flo simulation showed
that a simple "greedy controller" ap-
proach was sufficient to keep the carpet
flat and aloft despite a variety of per-
tubations. Depending on the assump-
tions of lift generated per node, only the
complete failure of a very large num-
ber of nodes would cause the carpet to
fail to meet its goal. Image courtesy J.
Bachrach, 2010



5.3 Fault tolerant (robustness) behavior of an asynchronous

nearest neighbor lattice of thrust cells

Inherent to programmable surfaces composed of independent cells is increased relia-

bility and robustness. This experiment aimed to show that routing redundancy can

preserve global communication despite local failures.

Figure 5-2: The test array was made
of nodes arranged on a grid. Each
node had an 8" composite propeller,
outboard brushless motor, pulse width
modulated (PWM) electronic speed
control (ESC), an integrated pro-
cessor and inertial measrement de-
vice, four universal asynchronous re-
ceiver/transmitter (UART) ports, and a
battery. All components were readily
available from hobby supply stores.

The processing and communications speed were chosen to match the mechanical

response time of the system, which used a pulsing fixed voltage to regulate the speed of

the propeller. Nodes were connected to their nearest neighbors in cardinal directions,

also known as a Von Neuman neighborhood. Communications between nodes was me-

diated with a simple Asynchronous Packet Automata (APA) routing protocol, described

in appendix E.

An additional component to integrate is a routing strategy which is an approach

for selecting the payload route through the nodes. There are several possibilities from

brute force broadcast (which isn't scalable) to dynamic optimal path discovery. There

are numerous algorithms from established practice which offer various benefits such as

robustness, speed, or avoiding local congestion.

We designed and implemented a system showing a method to handle redundant

routing through a grid in an asynchronous fashion. Nodes were shown acting on infor-

mation from far away nodes using only nearest neighbor communications and doing

so correctly in the face of small numbers of failures.



The choice of a routing algorithm depends heavily on the control law's requirements

and failure modes. There is a substantial body of (ongoing) research in routing, much

of which can be applied above the APA layer. Here we implement the simplest with the

understanding that more sophisticated routing can be done. We use redundant hard

coded paths to show system robustness in the event of node failures.

For a physical demonstration we invented a goal of symmetry preservation. Each

node is (conceptually) associated with an another node about an arbitrary line of sym-

metry. For a given node, if its opposite pair fails, the node should shut off too to pre-

serve balance across the entire system. We could imagine that this occurs by physically

dropping out of the array - perhaps as communication paths or nodes fail, the isolate

or broken nodes to remove themselves by decoupling from the grid. There needs to

be enough routing through the array to be able to discover if your pair is alive and re-

sponding. Since there are redundant paths through the grid, single "road" (intranode

pairwise connection) failures do not cause pairwise shutdown.

The demonstration was done with 6 nodes. The propellers served as a visual in-

dication of pair-wise connection status; however, our initial design did not sufficiently

shield and isolate motor drive signals and the back EMF noise occasionally caused

packet errors beyond what the system could handle. Either better designed power

electronics (such as the use of bypass capacitors, improved and separate ground planes,

shielded cables, and signal isolation) or a more robust protocol would have made this

work. We were able to reprogram on-board LEDs to accomplish the same status indi-

cation.

In the case of communications between any pair of nodes, there are multiple paths

of communications possible. For this demonstration the routing table was manually

generated, though autodiscovery, ad hoc routing schemes could be implemented and

is a well understood problem. As long as there is one path between the pairwise nodes

is availble, the motors will stay on. When a node can no longer communicate with its

pair, it turns itself off. Because all nodes are running the same code, both nodes in a

pair will turn off (as in the case where both propeller-motors are not broken but all



Figure 5-3: We used a commercial development board with an Atmel 328 processor and
IMU with UART daughter boards to quickly prototype node controllers. Nodes were
laid out on a grid. The processors perform the tasks of communications management,
computing control law coefficients, and sending commands to the propellers. Pulse
width modulated signals from the processor were connected to commercial electronic
speed controllers (ESC) which provided power electronics and drive circuitry for the
brushless DC motors driving 8" diameter propellers.

communications paths are severed).



5.4 Locally Sensed Global Parameters

The motivation here is to allow for a non-homogenous distribution of sensors in the

grid and for nearby actuator cells to utilize this information in their own behavior. The

simple experiment is to have a cantilevered chain of cells with strain gauges in the

connections between cells. The goal of the ensemble is to become and stay level with

an anchored cell at one end.

To date we have designed a custom circuit (replacing the prototype in figure 5-3)

using an STM32 processor and Omega strain gauges. These "hub" boards included

daughter board connections for UARTS and the analog front end for strain gauges.

Lessons from the fault tolerant demonstration in section 5.3 were incorporated into a

hardware rebuild with a larger propeller and motor and isolated power electronics. 50

controller boards were fabricated and work to come is to experimentally develop and

optimize an algorithm where nodes utilize sensor information shared locally to build a

global approximation.

5.5 Future Control and Programming Work

The end vision is reel-to-reel fabrication of integrated thrust cells which are assembled

by a parallel, programmable robotic assembler. In this work we used readily available

technology to physically implement an APA network to demonstrate communications

robustness among cells and integrated the APA network with readily available pro-

pellers, motors, and controllers. It is a long way from the greedy controller to a dis-

tributed mathematical algorithm. It will be essential to understanding the performance

needs of the distributed algorithm. In particular, we must answer these questions: a)

how much computation is required on each node, b) the communication bandwidth re-

quired between nodes, c) the fault sensitivities of the algorithm, and d) the mechanical

response time needed for overall system performance.

The greedy controller and more sophisticated algorithms can be immediately mapped

to the existing nodes for evaluation. The current motor control implementation drives



the motor via 50Hz PWM signals while the circuit design utilizes 60 MHz processors al-

lowing for a fairly complex amount of computation to occur between motor commands.

These nodes can be used for algorithm development and evaluation to come.

Creating the physical, programmable, CA flying nodes has been demonstrated to be

easily achievable with commericially available hobby parts. However, converting from

the standard hobbiest architecture of a single controller sending control signals to a

small number of propeller-motors to a distributed, asynchronous CA requires an as of

yet undeveloped tool chain for distributed mathematics and programming distributed

control laws.



Chapter 6

Energy Generation

Modern windmills come in a wide range of rotor sizes from a few feet in diameter to

several hundreds of feet. They may provide individual and residential needs as small as

200W up to 700 MW for municipalities. Generally most common windmills have two

or more blades rotating about a single hub which is connected to a shaft. The shaft is

directly coupled to a generator and inverter or battery. The generator and electronics

are covered by a nacelle to minimizes drag. Interaction of turbine wakes is a well

studied field and manufacturers are able to provide guidelines for standoff distance

among turbines for different blade configurations and wind profiles[14, 53, 46].

For power generation, many renewable sources (e.g., wind turbine, tidal generator,

geothermal vent) supply a variable amount of energy with time, requiring an expensive

variable-ratio gearbox in order to achieve high efficiency. Instead each of the indepen-

dent propellers on a programmable surface could be allowed to spin at different speeds

than its neighbors. The smaller size of the propellers means that they would be able to

spin significantly faster and the smaller combined mass of the propeller and generator

rotor would respond to more gentle breezes.

Instead of complicated gearboxes and charging circuits, each power generating

ergo' would have an electromagnetic motor coupled to a super capacitor. The capaci-

tor is left to charge to a predetermined level which trips a gate. The capacitor is then

'An ergo (from erg lego) is a single, asynchronous node comprised of a charging circuit, communica-
tions, processor, dynamo/generator, and fluidic interface actuator.



quickly discharged as a pulse to a neighboring ergo. More complex analog approaches

can be applied to make the pulse passing more efficient.

Instead of approximating an aperture disk with one large propeller, using several

smaller propellers can offer several benefits which, taken as a whole, may make the

proposition of creating energy from flowing fluids suitable for a greater range of situa-

tions. There are two distinct topics here, one is the purely technical topic of component

performance efficiencies such as the generator, propeller, or bearings which are usually

presumed to be limited by a theoretical maximum assuming perfect component effi-

ciencies. Known as the Betz limit, its derivation has several important limitations the

most relevant which is the assumption that a windmill interacts only with an incoming

stream tube no larger in diameter than the cross-sectional diameter of the propeller.

Another way to talk about efficiency emerges once we consider a system as op-

posed to a widget. Now we must bring in end-to-end, system-wide considerations

such as funding, policies, and legalities such as rights-of-way. In the context of the

real world, technical component-wise efficiencies can be misleading; there are other

considerations which on the whole may be just as or more important. For example, a

wildly expensive maximally efficient turbine is no match for a moderately priced but

slightly less efficient turbine. This simple example hints at the complexities once dol-

lars and time are brought into the equation. Appendix F shows a simple example of

why sometimes "many small" can be a better choice than "a few big" when years and

dollars come to play.



Chapter 7

Feasibility Summary and An

Implementation

In chapter 4, a literature review and some benchtop experimentation show that using

moving surfaces can make a significant effect on the overall flow pattern around and

behind the object. However, 3-dimensional prediction required to compute the neces-

sary wall movement poses a significant processing challenge, as current mathematical

models require global system knowledge which could not be measured by the object.

In chapter 3, I experimentally verified that more propeller-motor units packed

closer together generate more thrust for the same power (section 3.3 and 3.4), and as

the forward speed increases greatly compared to the downward speed, a configuration

transverse to the direction of flight can have significant benefit (section 3.5). When

hovering or moving slowly, the symmetric tightly packed hex shape was somewhat

more productive than the line of propellers, suggesting a dynamically reconfigurable

shape to accommodate both efficient hovering and high speed forward flight.

From drive signals to flight controls, motors to propellers, batteries to power con-

trol, all components for a distributed flyer were available to purchase from commercial

hobby sources. Propellers were available from 1 inch to 24 inches in diameter, along

with correspondingly sized brushless DC motors, drive controllers, and lithium ion

batteries. When investigating the programming and flight controls, an asynchronous

cellular automata (CA) scheme was be implemented using small, inexpensive micro-



processors integrated with inertial measurement units and serial bus communications.

Routing among CA nodes was determined manually, however, autodiscovery and dy-

namic routing is a well-understood and well-researched area. A simple example of

global behavior with only nearest neighbor communications was demonstrated by sim-

ulation.

F5: Fungible Flexible Friable Frangible Flyer

Figure 7-1: F5: Fungible Flexible Friable Frangible Flyer



It seems clear that the first programmable surfaces to realize should be flyers, based

on the availability of components and the depth of research in the various supporting

areas. Today, there are a large number of unmanned aerial vehicles (UAV) fielded for

a wide variety of tasks, from long range attack like the 300 mph, 10,500 lbs General

Atomics MQ-9 Reaper UAV, to surveillance like the 81 mph, 20 lbs Honeywell RQ16A

T-Hawk micro-UAV
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Figure 7-2: UAV's fielded or under development span a wide range of altitudes, en-
durance, and payload capacity. Unlike an F5 UAV, these platforms are not scalable to
match the mission.

Most technical parameters can be designed to meet mission needs, however, a dis-

tributed flyer has two particular inherent advantages. The distributed nature allows

efficient mission matching so that the platform can be sized in the field to match the

range, endurance, or payload while minimizing the need for unique spares and spe-

cially trained personnel. The second advantage addresses a challenge to fielding UAV

for general use in public airspace: regulatory forces that might prevent the systems



from operating out of concerns for safety. The distributed flyer, with loads distributed

among the thrust units, could employ length-wise stiff but otherwise floppy intercon-

nections among them. These connections could be designed to break or release as part

of a detection and avoidance scheme. If the array were to be struck by another aerial

vehicle or sucked into an engine, it could disintegrate into small parts which might

cause less harm to the other vehicle.

The notional exemplary embodiment of a distributed flyer is the "E5". The F5 is a

unmanned aerial vehicle (UAV) flier comprised of cells each containing the capability

of generating lift, processor, power, communications, and a fundamentally distributed

payload. It is fungible, that is, adding more cells gives more net lift and more payload.

It is flexible, so that on landing it might drape over terrain or be rolled up for storage or

transport. It is friable or easily broken apart into small pieces so that it does not pose

a threat to other aircraft, and frangible so that cells break apart in a predictable way

to protect the rest of the structure. Hence its name "F5", a Fungible Flexible Friable

Frangible Flyer.

These features together provide an affordable, mission reconfigurable, systems effi-

cient, fault-tolerant, safe alternative to conventional UAVs. The F5 builds on additional

areas of research including additive asssembly of digital materials and spatial program-

ming models.
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Appendix A

Nomenclature



Symbol Units Definition
A

D

CT

CP

i, I

kv

kT

L

Re

RPM

r

Pe

PS

T

V

U

-Y

V

p

w

't

(meters)2

meters

dimensionless

dimensionless

amps

meters

Newtons

ohms

meters

Watts

horsepower

newtons / meters 2

kilograms

volts

meters per second

meters 3

meters / second

density

angular speed

torque

area

diameter

thrust coefficient

power coefficient

current

motor constant

torque constant

length

lift force

resistance

Reynolds number

revolutions per minute

radius

electrical power

shaft (mechanical) power

pressure

thrust

voltage

free stream velocity

volume

linear velocity

Symbol Units Definition



Appendix B

Instrumentation

B.1 "Benchtop" Water Flow Tank and Instrumentation

Tank: The flow tank is a 72 in long x 24 in wide x 25 in high, 180 gallon glass tank on a

custom extruded aluminum frame with an attached instrument rack. The recirculating

water flow was moved with a 1/4 HP utility water pump (later replaced with a 1/3 HP

pump), rated for 20 (29) gallons per minute at 5 feet of head. 2 in diameter plastic

pipes carried water from one end of the tank to the other where a flow laminarizer

baffled and straightened the flow before the flow encountered the test object. The

laminarizer was constructed with lengths of large diameter plastic pipe packed with

wool, mesh, and straws. Additionally, a drinking-water rated filter system and surface

skimmer were installed to help keep the water clean. Power strips attached to the

equipment rack were outfitted with ground fault interrupter circuits (GFIC) which cuts

main power if electronics are accidentally wetted or submerged.

Power: Two Hewlett-Packard power supplies were used to provide independent

power to the propeller motors, rollers ("ergos"), speakers, or solenoids, as each exper-

iment required. Each power supply could be commanded to a specific output voltage

level and queried for the total voltage and current via null modem serial cables from a

computer.

Displacement Instrumentation: A laser goniometer (angle measure) was con-

structed with a 5mW red diode laser pointing to a graduated wall outside the tank.



The position of the laser dot could be manually read. on a quad photo diode target

mounted on the dry side of the tank wall. The laser was attached to the arm on which

the test object was mounted. A compliant flexure at the base of the arm where it con-

nected to a tank cross piece allowed the test object and laser diode to swing forward

and aft in the flow with little movement in other axes. See figure B-1.

tank wall tank wall

enainstd~w

"*flow mount target wall
L anchor

d 1

11aw direcion

Figure B-1: Sketch of a laser goniometer used to measure displacement. View from top
of tank looking down. Since tan(0) = = , then the streamwise displacement of
the object is d = x}.

Flow Speed Instrumentation: A Nikon D90 digital SLR camera with 60mm macro

lens recorded particles entrained in the fluid flow. The camera was capable of high def-

inition (1280 x 720 pixels) at 24 frames per second video or 4.5 frame per second still

frame shooting. A green 5mW laser was mounted behind a glass rod to make a laser

sheet. The sheet was aligned with the test object so that the laser sheet illuminated a

streamwise cross section above the test object. Several types of particles were tested,

from inexpensive, very fine glitter to glass and plastic microspheres, to the most expen-

sive silver coated glass microspheres. All particles were certified as safe to dispose of

through the building water drain, entrained with the waste water.

Flow and Wake Visualization: Drinking water safe fluorescent dye was injected

into the flow or seeded on various parts of the test object for naked eye flow visualiza-

tion. This was particularly striking when experimenting with synthetic jets.



B.2 Wind Speed Profiles Measurements Using a Hot Wire

Anemometer

Wind speeds were measured using an Extech 407119 hand held hot-wire anemometer.

The anemometer probe is a very fine metal wire which is heated by an electric current.

The air flow to be measured causes convective cooling about the wire. The wire's

resistance is dependent on its temperature; the anemometer internally measures the

resistance of the wire to determine its temperature and thus deduce the air flow speed.

The Extech 407119 has a range of 0.2 to 17 m/s with 0.1 m/s resolution and +/- 5%

accuracy. The small size of a hot wire anemometer probe and its method of operation

(in particular, having no moving or spinning parts such as common turbine or "cup"

anemometers) resulted in minimal back-pressure or other impacts on the flow being

measured.

The anemometer was mounted on an arm so that it could be positioned down-

stream from the propeller and moved through space in a plane parallel to the plane

of the propeller. In some data gathering sessions, the probe was mounted on an arm

which swung about a pivot point and the angle was recorded. In other sessions it was

mounted to a F-shaped arm which slid along a linear track and position along the track

was recorded.

The wake of a propeller is a spiral shaped sheet of high velocity flow. It it neither

laminar, constant, nor aligned with the stream-wise direction. The anemometer has

a baffle about the wire probe which I aligned with the stream-wise axis. The more

turbulent or misaligned the flow, the greater variation in readings while more laminar

flows were less varied. The wind speed profiles presented in section 3.3 represent a

minimum of 6 data samples at regular time intervals for each data point. Error bars

drawn in figure 3-4 and figure 3-5 represent maximum and minimum values while the

data marker is placed at the average. Motor power consumption and propeller rotation

speed were recorded simultaneously. In some cases, thrust force against a load cell was

measured simultaneously as well.



Figure B-2: Hot wire anemometer mounted on a plate marked with degrees. The
propeller (at top of photo) is blowing "down". Inset is a scatter graph of velocities at
different distances from the propeller.
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Figure B-3: Using a spectrum analyzer "app" on a smartphone to measure revolutions
per minute (RPM).

B.3 Rotational Speed Using A Non-contact Tachometer

There are many inexpensive commercial tachometers available to measure the RPM

(revolutions per minute) of propellers. The two methods I used most commonly were

a hand-held no-contact photodiode meter intended for RC airplane hobbyists and a

smartphone, laptop, or similar device with a microphone with freely available spectrum

or frequency analyzer software intended for musicians.

Since whirling propellers produces an audible sound, a frequency or spectrum an-

alyzer commonly available for music and sound work can "hear" the rotation speed.

Each time a blade moves through and displaces a fluid, an observer hears a "whoosh".

The rate of the displacements are displayed as a frequency inversely proportional to the

whooshes per second. If n blades were mounted on a hub, one complete revolution of

the hub would result in hearing n whooshes or n times the hub rotation speed.

Thus, to find revolutions per minute (RPM),



1 (60sec 1 revolutions (B.)
)-( ) - ( ) = (B.1)__

(frequency measured min number of blades minute

It can be difficult to isolate the effect of a single propeller when several are running

at the same time. In those cases the non-contact photodiode tachometers are preferred.

Some require a piece of reflective tape to be attached to the propeller which was diffi-

cult because most of the propellers used in this study were quite small and would be

unbalanced with the relatively large and thick reflection target. The tachometer I used

most often was a Tower Hobbies Digital LCD Mini-Tachometer. Its operating range is 0-

32,000 RPM and automatically reports RPM after the user selects the number of blades

on the propeller. It uses a photodiode to detect when the passing propeller blade ob-

scures a light source. The Tower Hobbies device, and similar competing models from a

very large variety of sources, were less than $20.



Appendix C

Characterization of a Single

Propeller-Motor Pair



This chapter describes matching a commercially available hobby propeller to a com-

mercially available hobby motor. Because the experiments call for a large number of

units, availability, cost, and simplicity of control were a consideration in selecting the

brushed DC motors. Plastic hobby propellers in smaller diameters are offered in inch

increments starting around 2 inches and available in one spin direction.

Procedure to select and characterize the propeller-motor pair:

1. Search for a reasonably priced, small, high speed brushed DC motor. (C.1)

2. Experimentally match the motor with a small selection of commercially available

propellers. (C.2)

* Determine operating region for motor.

" Measure no load motor speed in the expected operating region.

- Experimentally find a propeller that loads the motor between 75 - 80% of

the no load speed in the expected operating region.

" Sample several operating points with the candidate propeller to refine op-

erating region. (C.3)

3. Characterize the propeller-motor pair. (C.4)

* Record power, thrust, and speed of the propeller at several points in the

operating region.

* Non-dimensionalize and relate power to speed (Cp vs Re) and thrust to

speed (CT vs Re).

C.1 the motor

The motor internal resistance W is too small to measure directly so it is calculated by

measuring the voltage and current when the motor is stalled. I recorded several values



Table C.1: Measured
resistance.

voltage and current of stalled motor with calculated internal

at different voltages to find an average 9, as recorded in table C.1.

Figure C-1: Manufacturer data on the motor.

The manufacturer's specifications for the small, brushed DC motors (figure C-1)

indicated a no load speed of 31,800 RPM (revolutions per minute) but it was unclear

if this was at the nominal operating voltage (6V) or at the maximum voltage in its

operating range (7.2V). I thought I could quickly verify the manufacturer's information

by measuring the no-load RPM at the nominal and maximum operating voltages. I used

a no-contact tachometer that requires a 1 cm x 1cm reflective target on the rotating

part. I made a small flag out of reflective tape, however, the motor was not truly

unloaded because the tape flapped around like a paddle. Table C.3 records the motor

characteristics at the expected voltage for the scaling experiments.

The motor speed constant, Kv is the ratio of unloaded RPM to the voltage at the

stalled stalled resistance
volts amps (ohms)
1.00 0.2 1.01
2.00 0.9 1.11
3.00 2.5 1.20
4.00 unable to stall motor

average internal resistance 1.11



Table C.2: Measured no load motor RPM at different voltages.

terminals minus the voltage loss inside the motor. It is calculated by,

Ky = RPM/(v - i0 ) (C.1)

Manufacturer Measured
measurement @ ?V @ 6V units
no load RPM 31,800 19,560 rev/min

no load current (see table C.2) 0.5 0.2 amps
internal resistance W (see table C.1) (not provided) 1.11 ohms

motor speed constant kv (see eq C.1) (not provided) 3,384 RPM / volt

Table C.3: Motor parameters summary (Measurements at 6V).

C.2 selecting a propeller

The purpose of measuring the no load RPM is to guide the selection of a suitable sized

propeller. An ideal loading is 75% to 80% of the unloaded speed, or 14,670 RPM

to 15,648 RPM for this motor. A propeller operating close to its peak efficiency in this

range would be the best match for this motor. I attached several differently sized plastic

hobby propellers to the motor by press-fitting them on to the shaft and measured their

RPMs while applying 6V to the motor. The results are recorded in table C.4.

RPM RPM RPM
volts amps max min avg
1.00 0.156 3967 2275 3958
1.00 0.162 3846 3827 3834
2.00 0.216 8228 8215 8225
2.00 0.222 8280 8237 8239
3.00 0.376 12091 12006 12055
6.00 0.601 20497 19364 19560



propeller diameter pitch RPM
name (inches) (inches) @6V

GWS 2008 2.0 0.8
GWS 2508 2.5 0.8 22,800
GWS 3020 3.0 2 14,981
GWS 4025 4.0 2.5 11,100
GWS 5030 5.0 3 stalled motor

Table C.4: Rotation speed at 6V of several propellers of different lengths.

At 14,981 RPM, the 3" propeller fell best within the loading range.

Figure C-2: Manufacturer data on the propeller.

diameter 3.23 inches
pitch 2.0 inches

chord min 0.45 inches-
chord max 0.49 inches
chord avg 0.47 inches

thickness at tip 0.0335 inches
thickness at root 0.0560 inches

weight grams

Table C.5: GWS EP3020 propeller parameters.

C.3 the motor with propeller load

With the 3" propeller directly attached to the motor shaft, I recorded the total power

and RPM for several different voltages in table C.6.
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power RPM
volts (watts) avg
1.00 0.2 3774
2.00 0.9 6904
3.00 2.5 9595
4.00 5.0 11855
5.00 8.0 13781
6.00 12.6 15488

Table C.6: RPMs of GWS 3020 Propeller at Different Voltages. These are plotted as Ky
in figure C-3 and as Cp in figure C-4.

Above 5V, fluttering of the propeller was observed and the motor would become

quite hot during operation. A conclusion from these findings is to limit the motor oper-

ation to between approximately 1.5V and 5.5V Theoretically the RPM per volt should

remain constant but as shown in figure C-3 there is a decreasing resulting Ky as voltage

increases. The value in brackets is the equivalent amount of input voltage that has been

lost. If the decrease was due to increased heat and thus internal resistance I would ex-

pect the loss to be non-linear and much larger at the bigger voltages where more heat

is generated faster. Instead, the increase seems to be fairly linear and dependent on

speed.

Two possible sources for the additional loss are mechanical bearing losses and mag-

netic core loss, both of which are dependent on speed. The inexpensive motors selected

for the experiment used brass bushings rather than bearings; clearly as rotation speed

increased, friction and heat at the bushing increased. Magnetic core losses are energies

lost within the high permeativity magnetic material that guides the magnetic field in

the motor. A well-understood source of core loss is a resistive loss due to eddy cur-

rents, this is primarily a geometric and materials composition effect and not strongly

tied to frequency of operation. A second source of loss arises is known as hysteresis

loss, which arises from defects in the crystalline structure of the core material that

prevent a smooth change of the magnetic field through the material. The amount of

energy lost is repeated each time the magnetic field change is cycled; hence hysteresis

losses increase with higher frequencies because of the number of times the magnetic
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field changes.

A back of the envelope calculation to estimate possible core loss is to multiply the

volume of steel times the energy loss per pound times the switching frequency and

voltage:

1.74 W 8000 kg 15000 Hz
Pcore Pi. (0.17 in)2 -0.745 in .30% x 3 x

______________ lbs m3  60 Hz

volume of steel power loss per volume commutating frequency
(C.2)

= 8.50 watts

= 0.43 amps @ 6 volts

This is a reasonable possible explanation of the voltage dependent loss observed in

figure C-3.

C.4 characterizing the pair: relating power and thrust

to rpm

To fully characterize the chosen pair of propeller and motor, I recorded the power

consumption, rotation speed of the propeller, and output thrust at several different

voltage settings. The motor was rigidly mounted to a large block of metal set on a

scale. The propeller was press-fit on to the motor shaft and oriented so that the wake

pointed "up", pressing the test object "down" into the scale on the table. A benchtop

power supply was connected to the terminals of the motor. The power supply can

be set to a voltage and simultaneously reports the voltage and current draw on the

digital front panel. For the low end of voltages I chose a value within the motor's

intended operation region. Still wanting to characterize behavior in the higher range,

I attached a large heat sink to the motor casing and waited for the motor to cool to

room temperature in between samples. Flutter still occurred at the higher speeds. I

used a non-contact tachometer that did not require the addition of a reflective tape

which might have altered the performance of the thin propeller. A total of 70 data sets
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were recorded. Using the physical geometry parameters from table ??, equations for

CT (equation 3.1), Cp (equation 3.2), and a Reynolds number calculated using the

chord, I plotted these data in non-dimensional terms on Figure C-5.
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Figure C-5: Thrust and power coefficient of a 3" x 2" plastic propeller direct coupled to
a 12mm brushed DC motor.
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Appendix D

Making Synthetic Water Jets Using

Audio Speakers

D.1 Experiments with a synthetic jet made from a speaker

and plastic cups

These images are from a speaker driving a quick-and-dirty synthetic jet. Synjets suck

fluid in and push it out of the same hole. I took a speaker, jammed it tightly into a

plastic cup, and poked a hole in the bottom of the cup. The internal volume of the cup

was filled with water and dye and the contraption was submerged in room temperature

tap water.

The diameter of the base of the cup is just less than 1.6" (2.5oz/75ml cups; the

internal wetted volume is about half of the cup). The aperture hole was made with a

soldering iron and isn't terribly smooth; the hole is approximately 0.018" diameter.

I drove the speaker with a frequency generator and experimentally found the nicest

looking jets from a ramp wave which has a sharp voltage transition in one direction

and a smooth transition for the return. Each push of the speaker made a little jet pop

out through the hole. To make the photos, the frequency was turned very low, around

1Hz or one pulse per second, so that the dyed ring would have some chance to drift
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(a) a (b) The aperture hole is approximately 0.018"
diameter.

Figure D-1: Prototype synthetic jet.

away before the next pulse.

Sweeps through frequency (<1Hz - 60Hz), waveform (sine, square, triangle, ramp),

amplitude (OV - 1OV peak to peak), duty cycle (20%-60%) were performed to develop

an intuition of their effect.

A rigid body synthetic jet was made by sealing a speaker into a preformed carbon

fiber tube. An acetal copolymer disk with a small laser cut aperture is press fit into

the front of the tube. The volume in front of the speaker is filled with dyed water and

several different waveforms were applied to the speaker using a frequency generator.

The rigid body jet behaved similarly to the jet made from a plastic cup.

D.2 3D Printed Multi-aperture Synthetic Water Jets

In a quiescent tank, once the vortex rings lose energy they stay in place, drifting only

slightly, and new rings join the spent cluster (see the lower right area in images in

figure D-8. The distances traveled from the front plane of the orifice were recorded as

the location where the rings stop moving; this was a sharp transition. The collection of

images in figures D-8 and D-9 were captured at 4.5 frames per second using a Nikon
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Figure D-2: Synthetic jet producing vortex rings. These images and videos were made
with a Nikon D90 and a Nikkor 60mm micro lens which has a minimum focus distance
of 8.64 inches.
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Figure D-3: Vortex rings and jet formation using a rigid body synthetic jet.

Figure D-4: Multiple apertures spaced one diameter apart
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Figure D-5: 3D print of cavity and apertures for a multiaperture synthetic jet.
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(a) tightly packed apertures (b) loosely packed apertures

Figure D-6: Synthetic jets with multiple apertures with different aperture spacing.

Figure D-7: Multiple apertures spaced one diameter apart.
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Figure D-8: Vortex rings created by loosely spaced apertures.

Figure D-9: Vortex rings created by closely spaced apertures.

D90 camera. The data plotted in figure 3-8 were captured with 24 frames per second

720 pixel high definition video and analyzed post experiment for precise readings.

Although the speaker coil is driven "instantaneously" by a sharp transition of the

drive signal, the mechanics of the physical system have a slower response time. By

using frame rate of the camera and distance traveled, the mean velocity of the jet

could be calculated. The relationship of volume displaced to peak voltage of the drive

signal was measured by ejecting fluid into a graduated cylinder sealed about the orifice.
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Appendix E

An Asynchronous Routing Layer -

Asynchronous Packet Automata (APA)

Asynchronous Packet Automata is a routing algorithm for spatially distributed nodes

assigned to a regular grid. It was first described as part of an extension of CBAs Internet

0 coupled with an instrumentation reporting need in an unrelated project. The protocol

was refined and fully defined for implemented in the "fault tolerant" demonstration

(section 5.3).

An APA packet consists of the delivery path, return path, and payload.

The delivery path is a list of travel directions in the order they are to be taken. As

a travel direction is taken, the corresponding element on the list is removed from the

delivery path and the source from which the packet arrived is added to the return path.

When there are no travel directions in the delivery path, the remainder of the payload

is processed for input to the control law program.

In addition to the cardinal travel directions north, south, east, and west (denoted

with numbers 0-3 clockwise from north), the system includes three special directions:

self (%), all, and debug port. In particular, all provides a mechanism for detecting which

neighbors are present, which allows the system to periodically and dynamically map

the array.

A consequence of the asynchronous design is each node does not have to buffer

an entire packet instead only maintaining a constant amount of state, in this case,
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the direction of travel and the current section within the packet. The communication

scheme relies on a backpressure mechanism that blocks other nodes from sending bytes

to it until it is ready In the current implementation this is provided by request to send

and clear to send signals from the UART, but many similar mechanism are available in

other low level communication protocols.
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Appendix F

A Cost Analysis of Many Small vs. a

Few Big
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There are several technical reasons why it may be advantageous to use many small

distributed actuators rather than one very large actuator. It may be a matter of debate

whether a "conformal" approach can have the same aggregate yield on national wind

farm scales. Technical differences aside, we can all agree that some number of small

turbines could be deployed together to generate an equal rated capacity as a (very)

large turbine. In this section, I assume that the technical features of large and small

turbines are identical and present a cost analysis comparing the purchasing strategy

for turbines in unlimited and limited capital cases . Without relying on better or more

clever "widgets" in either case, I show that fungible, easily scalable units can have a

positive cost and time to acquisition impact.

For some motivation, I imagine that I am advising a locality or nation on an acqui-

sition scheme for wind turbines to create an electric grid that does not yet exist. This

imaginary country is the benefit of foreign goodwill and an initial gift will seed the en-

ergy production program. The Ministry of Energy knows that the energy demands will

grow over time and wishes to implement a program that includes a capacity for self-

sustainability and growth. There are two competing proposals that differ by the size

of the turbine. In the programmable surfaces context the size difference between con-

ventional turbines and conformal energy node is extreme; for this analysis the turbines

are a factor of 10 apart.

The large turbine proposal makes a very large purchase of one turbine at the outset

whereas the small turbines proposal makes a large purchase of enough small turbines to

equal the total production capacity of the larger turbine. In reality the purchases should

be sized to meet the estimated demand plus margin and since the operation ranges

and failure rates differ with the turbines the simple production capacity approximation

used here should be further refined. In both cases, the plan is to use the revenue from

energy sales for operational costs and continue purchasing and installing more of the

same sized turbines over time to meet the expected growth in demand.

Should the Minister of Energy invest in a steady smooth growth of smaller cheaper

turbines or bank on large expensive turbines?

Treating the analysis as a straightforward investment, I evaluate the net present
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value of two project proposals. I use standard assumptions of a discount rate of 15%, a

system lifetime of 20 years, and that there is infinite market for the generated energy.

The project with smaller turbines is planned with a slow addition of turbines over

time and thus more insensitive to electrical price volatility, our initial evaluation as-

sumes all goes well as planned and the electrical energy price grows at a fixed 1.4% for

the entire 20 years. Average costs, output ratings, and system efficiencies were com-

piled from a National Renewable Energy Labortory's 2006 report on wind turbine cost

scaling models and quotes from a commercial wind turbine company (see appendix F.1

and E2).

Generally speaking, if an investor has unlimited capital, he should by the bigger

windmill project which gets more capacity online the fastest. As a straightforward

investment, the largest possible windmill yields greater net present value over the life-

time of the turbine and because it generates a large capacity, the returns are faster and

the investment is repaid sooner.

So long as all goes well.

Figure F-1: "This turbine's 28-ton nacelle
and 3-blade rotor assembly crashed to the
ground scattering debris several hundred
feet from the structure. Approximately 20-
gallons of heavy oil spilled from the unit
when its fluid reservoirs were damaged.
The 11-turbine Searsburg, [VT] facility was
brought online in 1997 and [... ] the Zond
Z-P40-FS turbines had an expected lifespan
of 30-years." IWAG Press Release dated
October 2008, retrieved April 2011.

The risk involved with a system composed of only one turbine could be greater

because any delays, damage or downtime halts revenue while a system composed of

several turbines with one or more faults can continue to generate output.

However, in some cases a large loan with a good interest rate may be difficult to

come by. Perhaps our imaginary nation must trade the energy infrastructure investment

with investments in education, health, information and road infrastructure. In these
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cases the amount of start up capital becomes much more important. The modular

nature of smaller turbines means that a smaller array can be purchased initially and

the system upgraded as more funds are available through revenue earnings.

Our imaginary nation has fixed startup capital allowance and an imperative for the

fastest possible capacity growth from revenue. We start with an equal initial investment

sufficient to purchase one large turbine and proceeds from energy sales are reinvested

in additional turbines. Although the smaller turbines were more expensive per kWh,

the smaller turbines were unit-wise cheaper so they could be acquired faster than the

large turbines. The early adoption of these additional turbines resulted in years of

smooth growth in energy capacity while the large turbine system capacity remained

the same. Inspecting the total cost per year shows that in the limited capital case, a

strategy of faster expansion through the purchase of smaller turbines is worse in capital

efficiency. However, the time constant of expansion is smaller and can more readily

adapt to price volatility and deliver more energy sooner. At the end of 20 years, in one

analysis the strategy with smaller turbines generated nearly 9% more total capacity

simply because the more affordable smaller turbines were able to come online sooner.

The results graphed in Figure F-2 and F-3 compare the deployments' where I found

at least one reasonable condition when the approach of many-smaller acquisitions

yielded a better result. These results are fragile and were highly sensitive to the as-

sumptions about actual power produced, operating costs and risks, and the volatility

of prices. In many cases, purchasing the larger turbine seemed much more straightfor-

ward for faster returns but the analysis can't capture those nation-building intangibles

like local capacity. What's best is, after all, dependent on what is being optimized.

Without regard for risks (an arguably foolhardy approach), most results favored

bringing as much generating capacity online as possible as quickly as possible without

regard for the technology to accomplish it. Penalizing larger loans with larger interest

rates (in the cases where the initial loan had to be repaid) was strongly subject to the

II presume that there are no efficiency benefits or detriments with the use of the smaller turbines; for
some this is charitable allowance while for others this is a pessimistic assumption.
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Figure F-2: Comparison of Energy Generated over Time
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details of interest, discount, and revenue rates. The analyses did not compare tech-

nologies, i.e., it did not take into account my unproven assertion that a larger number

of smaller turbines can be installed more adaptably to the terrain and allowed to inde-

pendently match very localized wind speed and direction, thus increasing the available

generating time, nor the observation that smaller units are less costly to replace in the

case of failure.

Our imaginary nation not only wants to provide electrical energy but build a dif-

ferent kind of capacity - human and resource capital. The higher operating costs and

faster, more regular growth of the system with smaller turbines supports local skilled

labor and provides regular opportunities to for workers operate the systems through

its life cycle. Smaller turbines are also imagined to be less heroic to construct than

massive turbines so a local supply chain for new and replacement parts could be de-

veloped. The policy implications from this conclusion are interesting beyond technical

and financial terms.
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E 1 kW Wind Turbine - Data Sheet and Quote

Manufacturer's Data Sheet with Quote. (2011)
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Product ,
1 KW Hummi
Dear Valued Customer,

* All products shown in this price list are covered by the manufacturer's
warranties. We will gladly assist you with processing warranty claims for
items purchased from us. We can also assist you with any replacement
parts or accessories you may need to order

* We specialize in all sizes of wind turbines from micro & small sized wind
turbines of 200Watt -10KW suitable for cabins, boats, residential & rurat-
homes and small businesses up to larger sized industrial wind turbines
sized from 20KW - 1.5 MW

* Larger sized wind turbines are custom-made for you to meet your unique
specifications.

* We'll provide you with a FREE energy assessment to determine your
needs & then put together a comprehensive package for you.

* Volume Discounts are available: Qty 10 (3%), Qty 20 (5%), Qty 50 (10%) &
Qty 100 (15%).

* If purchasing multiple items, please contact us or a combined shipping
quote. Multiple items will be charged shipping based on the total weight
and the destination.

Wind Turbines (Up to 20 KW) Ship For FREE To Nearest Sea
Port Dock in Canadal

World Wide
Shipping

Wide Range
Selection

In-store Pick-up - No shipping charges.
Ship Direct - Shipped direct to your door.
Dock Pick-up - Pick up at your nearest sea port dock FOR FREEI (Direct from MFR
Custom Quote by email based on total weight of shipment & your locationgjia jby email.

y email.

Great Service

Installation
Service

IJ

@90

Fast Turnaround

Shipping Options (Canada):

Shipping Options (US):



1 KwI

1000 Watt (1KW) Wind TO

Includes: Wind Generator,

*Please note: Batteries are NOT included

Complete system US $2.672.00 click on price to convert to your currency

*Can add up to 500 watts of solar panels to this wind-solar hybrid system!

All Products Fully
Warranted

Expert Advice
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Power

Max output

Charge Voltagem',,,

Numbers of blade.

Blade material

Blade diameter (m) 3.1

Start up wind speed (m/s) 3.0

Rated wind speed (m/s) 9.0

Rated rotate speed (r/min) 500

Wind Utilize Ratio (Cp) 0.42

Generator Efficiency >0.8

Pole Diameter(mm) 090

Tower Height (m) 8

Generator weight (kg) 15

Battery 12V 150Ah/200Ah
5 pcs

(Batteries not included)

* Warranty Ind : 2 years for generator, 1 year for all other parts.
* *Optional 1 Year Extended Warranty (on generator) - $61.00 USD

Individual Component Prices:
* Hybrid Controller / Inverter -$ 963.39.00 USD
* 8M Guy Tower -$641.00 USD

NOISE INDEX: MODEL H3.1 -1 000W LAeq=30 dBA 5m behind turbineeSm/s gusting

controlling units.
tail wing, etc.
etc.
blades, nose cone,
anized and

patents.
of utilization ratio.

All Products Fully
Warranted

Expert Advice

ae*1e1



* Low in ener
e Swift runnir

generators
As a result i

* Swift chargi
generator v
faster than

Hybrid Off-grid C

Control System:

" The power efficiency has been hi i i i
" With the automatic program optimization of MPPT the generator capacity is highly improve
* LCD indicates information simultaneously.
* Real-time working power curve can be seen from the PC interface.
" Several optional communication interface includes power line carrier, RS485, wireless data
transmission.
* Comprehensive protection function with highly reliability
" Wide AC voltage range
" Freely set working curve chart
" Simple, reliable and special plug connection

Rotor blade:

" Blades can typically be made of glass fiber reinforced plastic or aluminum alloy.
* The Hummer blade is designed by aerodynamic experts according to the airscrew structure

and the wind power utilization ratio enhances up to 0.78.
* Most turbine blades have weak endurance through gale force type winds, they break easily

in low temperature, the usable time in gale area is usually no more than 3 years, etc,
Hummer has designed a new wind turbine blade, which can bear gale force winds.

* The hummer wind blade's successful application prolongs the entire wind turbine's service
life to 10-15 years more. With the auto-deflection tech, it operates stable-quietly and
soundlessly, and also brings enormous convenience for use and replacement.

Nose cone:

* The nose cone is made of reinforced aluminum alloy.
" It's located in front of blades to reduce the wind resistance. The generator is enclosed in the nose cone,

which is favorable for heat dispersion.
" Protection cover It is located between the blades and nose cone, and is made of reinforced aluminum

alloy to further reduce the wind resistance and protect the generator.
" Yaw shaft It is made of superior steel to Integrate blades, the generator, tail pole, tail wing and tower.

i condition, reliable and sharp

height. They are anticorrosion,

ior, so it is much easier for

anized, so they are
)und.
hich can be used in the
sand salt or frost areas.

.9,

Wide Range
Selection

Great Service

Installation
Service

Fast Turnaround

9,,
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F.2 10 kW Wind Turbine - Data Sheet and Quote

Manufacturer's Data Sheet with Quote (2011)
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Product
10KW Hummer
Dear Valued Customer,

e All products shown in this price list are covered by the manufacturer's
warranties. We will gladly assist you with processing warranty claims for
items purchased from us. We can also assist you with any replacement
parts or accessories you may need to order

e We specialize in all sizes of wind turbines from micro & small sized wind
turbines of 200Watt -10KW suitable for cabins, boats, residential&rural-
homes and small businesses up to larger sized industrial wind turbines
sized from 20KW - 1.5 MW

* Larger sized wind turbines are custom-made for you to meet your unique
specifications.

* We'll provide you with a FREE energy assessment to determine your
needs & then put together a comprehensive package for you.

e Volume Discounts are available: Qty 10 (3%), Qty 20 (5%), Qty 50 (10%) &
Qty 100 (15%).

* If purchasing multiple items, please contact us or a combined shipping
quote. Multiple items will be charged shipping based on the total weight
and the destination.

Wind Turbines (Up to 20 KW) Ship For FREE To Nearest Sea
Port Dock in Canada!

Shipping Options (Canada):

1. In-store Pick-up - No shipping charges.
2. Ship Direct - Shipped direct to your door.
3. Dock Pick-up - Pick up at your nearest sea port dock FOR FREEl (Direct from MFR)
4. Custom Quote by email based on total weight of shipment & your location|Qgg& gy email.

Shipping Options (US):

Ship Direct - Shipped direct toyoue doora



10KW Hummer
(Hybrid: Wind & Solar)

10,000 Watt (10KW)

Includes: Wind Generator, inverter/ Controller, and 14m Guyed Tower

*Please note: Batteries are NOT included.

Complete system IUS $22069.00 click on price to convert to your currency

*Can add up to 3500 watts of solar panels to this wind-solar hybrid systeml

Ali Products Fully
Warranted

Expert Advice

Free Estimates

##

World Wide
$hpments

Individual Component Prices (Off-grid):

1.52USD





NOISE INDEX:

MODEL H8.0-1 0000W

Generator &

Direct Drive Permanent I

Unique Design with Independent Intellectual Property
Handsome-Looking
Super Light Super Efficient with Low Rated Wind Speed
Generator Placed Inside Nose Cone
Widely Used in Same & Medium Scale Wind Farms, Residential,
Commercial Areas

Hummer Off-Grid Inverter

Specially Designed for Hummer Wind Turbine
CPU Smart Control
Highly Efficient & Reliable
Compatible for Direct Linking with Solar Panels
True Pure Sine Wave Output
Stronger Compatibility for Driving Loads
Multi Protection Against Overheat, Overcharge, Overdischarge,
Overload etc.

All Products Fully
Warranted

Expert Advice

Free Estimates

: Generator

u~pa nta~fr1~vstnm r]



THIS PAGE INTENTIONALLY LEFT BLANK

130



Bibliography

[1] Control of turbulent flow separation by synthetic jets. pages 1-9, May 2011.

[2] Assad Al Alam, Ather Gattami, and Karl Henrik Johansson. 13th International
IEEE Conference on Intelligent Transportation Systems. In 2010 13th Interna-
tional IEEE Conference on Intelligent Transportation Systems - (ITSC 2010), pages
306-311. IEEE, 2010.

[3] A Alvarez-Calderon. A study of the aerodynamic characteristics of a high-lift
device based on a rotating cylinder and flap, 1961.

[4] Alberto Alvarez-Calderon. CONVERTIPLANE AND APPARATUS THEREOF. April
1965.

[5] Alberto Alvarez-Calderon. VTOL AND THE ROTATING CYLINDER FLAP. Annals
of the New York Academy of Science, 107(1):249-255, August 2006.

[6] J Beal. Cells Are Plausible Targets for High-Level Spatial Languages. In Self-
Adaptive and Self-Organizing Systems Workshops, 2008. SASOW 2008. Second
IEEE International Conference on, pages 284-291, 2008.

[7] William Joseph Butera. Programming a paintable computer. PhD thesis,
libproxy.mit.edu, February 2002.

[8] Louis N Cattafesta III and Mark Sheplak. Actuators for Active Flow Control. An-
nual Review of Fluid Mechanics, 43(1):247-272, January 2011.

[9] D. R. Cichy, J W Harris, and J K MacKay. Flight Tests of A rotating Cylinder Flap
on a North American Rockwell YOV-10 Aircraft. Technical report, North American
Rockwell Corporation, November 1972.

[10] Thong Q. Dang and Peter R. Bushnell. Aerodynamics of cross-flow fans and their
application to aircraft propulsion and flow control. Progress in Aerospace Sciences,
45:1-29, 2009.

[11] George de Bothezat. The General Theory of Blade Screws. First Memoir. National
Advisory Committee for Aeronautics. Preprint from Fourth annual report., January
1919.

131



[12] E de la Rosa Blanco, C A Hall, and D Crichton. Challenges in the Silent Aircraft
Engine Design. In 45th AIAA Aerospace Sciences Meeting and Exhibit, pages 1-20,
January 2007.

[13] Alan H. Epstein. Distributed Propulsion: New Opportunities for an Old Concept.
Technical report, December 2007.

[14] L Fingersh and M Hand. Wind turbine design cost and scaling model. ... Labo-
ratory Technical Report, 2006.

[15] RE Froude. On the part played in propulsion by difference in pressure. Transac-
tions of the Institution of Naval Architects, pages 390-423, 1889.

[16] Mohamed Gad-el Hak and D M Bushnell. Separation Control: Review. Journal of
Fluids Engineering, 113(1):5-30, January 1991.

[17] N Gershenfeld, D Dalrymple, K Chen, A Knaian, F Green, E Demaine, S Green-
wald, and P Schmidt-Nielsen. Reconfigurable Asynchronous Logic Automata
(RALA). In Proceedings of the 37th annual ACM SIGPIAN-SIGACT symposium on
Principles of programming languages, pages 1-6, January 2010.

[18] Neil Gershenfeld, kailang chen, and david allen dalrymple. Asynchronous Logic
Automata. (12/422979).

[19] K Gilpin, A Knaian, and D Rus. Robot pebbles: One centimeter modules for pro-
grammable matter through self-disassembly. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 2485-2492, 2010.

[20] Ari Glezer and Michael Amitay. SYNTHETIC JETS. Annual Review of Fluid Me-
chanics, 34:503-529, 2002.

[21] AS Gohardani and G Doulgeris. Challenges of future aircraft propulsion: A re-
view of distributed propulsion technology and its potential application for the all
electric commercial aircraft. Progress in Aerospace Sciences, 2010.

[22] Cesare A. Hall, Emily Schwartz, and James I. Hileman. Assessment of Technolo-
gies for the Silent Aircraft Initiative. In Journal of Propulsion and Power, pages
1153-1162. Stanford Univ, Stanford, CA 94305 USA, 2009.

[23] J. I. Hileman, Z. S. Spakovszky, M. Drela, M. A. Sargeant, and A. Jones. Airframe
Design for Silent Fuel-Efficient Aircraft. In Journal of Aircraft, pages 956-969.
MIT, Dept Aeronaut & Astronaut, Gas Turbine Lab, Cambridge, MA 02139 USA,
2010.

[24] RD Joslin and CL Streett. Spatial Direct Numerical Simulation of Boundary-Layer
Transition Mechanisms: Validation of PSE Theory. Theoretical and Computational
Fluid..., 1993.

132



[25] Ronald D Joslin, Gordon Erlebacher, and M Y Hussaini. Active Control of Instabil-
ities in Laminar Boundary Layers-Overview and Concept Validation. September
1996.

[26] HD Kim and GV Brown. Distributed turboelectric propulsion for hybrid wing body
aircraft. 9th International Powered Lift..., 2008.

[27] Hyun Dae Kim. Distributed Propulsion Vehicles. In 27TH INTERNATIONAL
CONGRESS OF THE AERONAUTICAL SCIENCES, pages 1-11. NASA Glenn Re-
search Center, June 2011.

[28] AN Knaian. Design of programmable matter. 2008.

[29] Y Kubo. Suppression of wind-induced vibrations of tall structures through mov-
ing surface boundary-layer control. Journal of Wind Engineering and Industrial
Aerodynamics, 61(2-3):181-194, July 1996.

[30] P F Linden. The efficiency of pulsed-jet propulsion. Journal of Fluid Mechanics,
668:1-4, 2011.

[31] Vernard E Lockwood and Linwood W McKinney. Lift and Drag Characteristics at
Subsonic Speeds and at a Mach Number of 1.9 of a Lifting Circular Cylinder with
a Fitness Ratio of 10. Technical report, Langley Research Center, December 1959.

[32] JKL MacKay. Boundary layer control device for tilt rotor configuration.
(5236149), 1993.

[33] Norman Margolus. CAM-8: a computer architecture based on cellular automata.
Technical report, December 1993.

[34] W McCarthy Programmable matter. Nature, 2000.

[35] S Mittal. CONTROL OF FLOW PAST BLUFF BODIES USING ROTATING CONTROL
CYLINDERS. Journal of Fluids and Structures, 15(2):291-326, February 2001.

[36] V J Modi, F Mokhtarian, T Yokomizo, G Ohta, and T Oinuma. Bound vortex
boundary layer control with application to V/STOL airplanes. Fluid Dynamics
Research, (1-4):225-230, September 1988.

[37] Vinod J Modi and Ayhan Akinturk. Effect of Momentum Injection on Drag Reduc-
tion of a Barge-like Structure. In Proceedings of The Twelfth (2002) International
Offshore and Polar Engineering Conference, pages 295-302. University of British
Columbia, May 2002.

[38] VJ Modi. Moving surface boundary-layer control: A review. Journal of Fluids and
Structures, 11(6):627-663, 1997.

[39] VJ Modi, F Mokhtarian, MSUK FERNANDO, and T Yokomizo. Moving Surface
Boundary-Layer Control as Applied to 2-Dimensional Airfoils. Journal of Aircraft,
28(2):104-112, 1991.

133



[40] VJ Modi, SR Munshi, G Bandyopadhyay, and T Yokomizo. High-performance air-
foil with moving surface boundary-layer control. In Journal of Aircraft, pages
544-553. Univ British Columbia, Dept Mech Engn, Vancouver, BC V6T 1Z4,
Canada, 1998.

[41] VJ Modi and ML Seto. On the dynamics and control of fluid-structure interaction
instabilities. . .. of the International Offshore and Polar .. . , 1997.

[42] VJ Modi, E SHIH, B YING, and T Yokomizo. Drag Reduction of Bluff-Bodies
Through Momentum Injection. Journal of Aircraft, 29(3):429-436, 1992.

[43] VJ Modi and T Yokomizo. On the Boundary-Layer Control Through Momentum
Injection - Studies with Applications. Sadhana-Academy Proceedings in Engineer-
ing Sciences, 19:401-426, 1994.

[44] F Moktarian and V J Modi. Fluid Dynamics of Airfoils with Moving Surface
Boundary-Layer Control. JOURNAL OF AIRCRAFT /AIAA, 25(2):163-169, Febru-
ary 1988.

[45] S R Munshi, V J Modi, and T Yokomizo. Fluid dynamics of flat plates and rectan-
gular prisms in the presence of moving surface boundary-layer control. sciencedi-
rect.com, 79, January 1999.

[46] Valery L Okulov and Jens N Sorensen. Refined Betz limit for rotors with a finite
number of blades. Wind Energy, 11(4):415-426, July 2008.

[47] LaTunia G Pack and R D Joslin. Overview of Active Flow Control at NASA Langley
Research Center. Smart Structures and Materials 1998: Industrial and Commercial
Applications of Smart Structures Technologies / SPIE, 3326:202-213, 1998.

[48] Adnan Qayoum, Vaibhav Gupta, P K Panigrahi, and K Muralidhar. Influence of
amplitude and frequency modulation on flow created by a synthetic jet actuator.
Sensors and Actuators A: Physical, 162(1):36-50, July 2010.

[49] WJM Rankine. On the mechanical principles of the action of propellers. Transac-
tions of the Institution of Naval Architects, pages 13-39, 1865.

[50] AK Sehra and W Whitlow. Propulsion and power for 21st century aviation.
Progress in Aerospace Sciences, 2004.

[51] Khurshid Shahid, S. L. Lan, and M. Sun. Aerodynamic Forces of Micro Rotors at
Low Reynolds Number. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE
ON MECHANICAL ENGINEERING AND MECHANICS, pages 869-874, November
2007.

[52] Barton L Smith and Ari Glezer. The formation and evolution of synthetic jets.
PHYSICS OF FLUIDS, 10(9):2281, 1998.

134



[53] 0. Stalnov, A. Kribus, and A. Seifert. Evaluation of active flow control applied to
wind turbine blade section. Journal of Renewable and Sustainable Energy, 2(6):,
2010.

[54] Kelly R Sutherland. Form, function and flow in the plankton: Jet propulsion and
filtration by pelagic tunicates. PhD thesis, April 2010.

[55] T TOFFOLI and N MARGOLUS. Programmable Matter - Concepts and Realization.
Physica D, 47:263-272, 1991.

[56] E Torenbeek and H Wittenberg. Flight Physics: Essentials of Aeronautical Disci-
plines and Technology, with Historical Notes. Springer, 1 edition, July 2009.

[57] V T Truong. Drag reduction technologies. Technical report, Aeronautical and
Maritime Research Laboratory, Australia, June 2001.

[58] Frank M White. Fluid mechanics. McGraw-Hill Science/Engineering/Math, 2003.

[59] D You and P Moin. Active Control of Flow Separation Over an Airfoil Using
Synthetic Jets. pages 1-11, May 2011.

135


