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Abstract

An inference-based method for modeling

complex non-linear systems is presented

that integrates current approaches to mod-

eling of microwave devices within a gen-

eralized non-linear framework. Familiar

techniques for characterizing and emulat-

ing linear and non-linear systems are em-

bedded in an automated weighting mech-

anism, so that globally complex behavior

is approximated by a number of simple lo-

cal models. The framework handles non-

Gaussianity, non-stationarity and disconti-

nuity. It o�ers meaningful parameters, such

as linear �lter coe�cients or Volterra ex-

pansion coe�cients, as well as detailed error

estimates.

1 Introduction

Microwave device technology has evolved into ap-
plication domains where its emulation and char-
acterization with linear techniques are no longer
satisfactory. Although non-linear e�ects appear in
many systems to such an extent that failure or suc-
cess of ambitious design goals depend on them, the
measurement technology as well as the data repre-
sentation in state of the art analyzer systems still
relies on the assumption of linearity. As a result,
most of the interesting and useful non-linear be-
havior of microwave devices is either missed or ne-
glected.

Non-linearity is di�cult to model as well as to
characterize; while physical models [3] require im-
practical amounts of computation, reliable electri-
cal models are device-speci�c and tedious to de-
sign [6]. Motivated by successful inference ap-
proaches to system characterization in other en-

gineering domains, we present an approximation
architecture that characterizes a device based on
analysis of empirical data collected from the device
under test (DUT). The framework is based on sim-
ple local models that share the input data space,
weighted by global Gaussian kernels. Although the
model's local structure is based on conventional
well-understood modeling practice and theory, it
is able to predict globally complex and non-linear
behavior.

While section 2 of this work presents the
framework as a general function approximation
framework, section 3 introduces two local archi-
tectures that are speci�cally suitable to modeling
microwave devices. The �rst architecture is con-
cerned with a time domain approach. Linear sys-
tems theory has shown how linear autoregressive
models can approximate a linear �lter of arbitrary
complexity given an arbitrary number of tabs in
the autoregressive model (IR-Filter). Non-linear
systems theory has shown how internal degrees of
freedom of a physical system can be reconstructed
from input and output observables of the system
[8, 1]. This reconstructed state space can be used
to predict arbitrarily non-linear systems. In be-
tween these two extreme cases there are many sys-
tems that behave linearly at a local scale but show
non-linear behavior when driven over a wide range
of input signals. As an example of such a system we
introduce a data set of simulated amplitude modu-
lated input and output signals from an Ebers-Moll
transistor model (�g.5) [11]. This circuit can be
e�ciently described and predicted by linear mod-
els that are embedded in the non-linear function
approximation framework.

References [9] and [10] introduced the non-
linear S-parameter equivalent for weakly non-
linear multi-port devices. As described by the
Volterra theory, non-linear interaction between fre-
quency components can be modeled by polyno-
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mials beyond the �rst order linear terms. Such
model is able to characterize harmonic responses
at the output-port due to non-linear coupling be-
tween harmonic components at the input-ports, up
to an arbitrary order of approximation. We show
how the Volterra approach to device modeling is
integrated into our global framework. Although
Volterra approximations perform well on the lo-
cal scale, their accuracy degrades over a larger dy-
namic range and a wider frequency span. Once
again our algorithm overcomes this problem, as it
optimally allocates a series of local models describ-
ing di�erent input-output behavior.

2 Global Architecture

To start, we take a set of experimental measure-
ments by driving a device with signals vn at the
input port and measuring the output signalswn at
the output-port. vn is drawn from pv(v) , where
pv(v) describes the unconditioned probability of v
given a speci�c application. Let x and y be any
quantities of interest in the time or frequency do-
main derived from v and w, such as complex co-
e�cients describing the incident, transmitted, and
re
ected energies at the device (�g. 1).

Given the set of measurements fyn;xng
N
n=1, we

infer the joint probability density p(y;x), which
lets us derive conditional quantities such as the ex-
pected value of y given x, hyjxi, and the expected
covariance matrix of y given x, hCyjxi. The value
hyjxi serves as prediction of the target value y and
hCyjxi serves as its error estimate [4].

The joint density p(x;y) is expanded in clus-
ters labeled cm, each of which contains an input
domain of in
uence, a local model, and an output
distribution:

p(y;x) =

MX
m=1

p(y;x; cm) (1)

=
MX
m=1

p(yjx; cm) p(xjcm) p(cm)

The kernel probability functions p(yjx; cm) and
p(xjcm) are taken to be Gaussian so that
p(xjcm) = N (�m;Cm) and p(yjx; cm) =
N (f(x; �m);Cy;m), where N (�;C) stands for
the multi-dimensional Gaussian distribution with
mean vector � and covariance matrix C. The
function f(x; �m) with unknown parameters �m is
taken to be a linear coe�cient model of the form

y =

MX
m=1

�mfm(xn) (2)

Given this density estimate we infer a conditional
forecast

hyjxi =

PM

m=1 f(x; �m) p(xjcm) p(cm)PM
m=1 p(xjcm) p(cm)

(3)

as well as a conditional error forecast,

hCyjxi = (4)PM

m=1[Cm;y + f(x; �m)f(x; �m)
T ] p(xjcm) p(cm)PM

m=1 p(xjcm) p(cm)

�hyjxi2

3 Local Models

3.1 Time Domain Approach

So far the local models f(x) have only be con-
strained to be of form (2). In this section we spec-
ify a local architecture that allows one to model
weakly non-linear multi-port networks in the time
domain.

If the output time-series at time t and at a
given operating point is a linear function of the
input signals at time t, the output model is of the
form

y(t) = �0 +

DX
d=1

�d � xd(t) (5)
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Figure 2: Approximation of 3 (out of 4) frequency components. The rows represent the approximation
results of (a) a linear model, (b) a 5th-order-polynomial, (c) 5-cluster/local-linearmodel, (d) 3-clusters/local-
quadratic model.

If the system has some sense of memory we may
use lagged values of the input time series to aug-
ment the state vector. In this approach of `weak'
state space reconstruction the model becomes

y(t) = �0 +

DX
d=1

KX
k=1

�d;k � xd(t� k � �) (6)

where k is the number of lags and � is the time lag.
This approach avoids the stability problems of the
embedding method, but retains the notion of state
augmentation and allows for present output to be
conditioned on past system states [1].

3.2 S-Parameter Approach

In this section we specify a local architecture to
represent and predict RF multi-port networks in
the frequency domain. A linear multi-port network
is completely speci�ed by its scattering and re
ec-
tion parameters S(!)i;j , where i refers to an input
and j to an output signal, and the device load can
be described by linear superposition of input signal
components. However, transfer and re
ection co-
e�cients of non-linear devices can only be speci�ed
as functions of all input frequency components.
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Figure 3: Approximated data from a simulated ampli�er (b2(1); b2(2); b2(3)). The x-axis gives the number
of a test run, the y-axis indicates the energy in the component. Original and predicted output data a)
sorted by the energy of the fundamental, b) sorted individually by the energy of the particular component.
The noise in the predicted f1 and f2 plot indicates a slight prediction error.

Starting from �g.1 we need to identify the ef-
fect of combinations of input signals ai on the out-
put signals bj . Restricting input and output to
harmonic signal components, we denote the in-
put component associated with the fundamental
f1, and the harmonics f2; f3::: by ai(1); ai(2); :: re-
spectively. We designate the corresponding output
components by bi(1); bi(2); ::.

The S-parameter approach for linear mi-
crowave devices is extended into non-linear trans-

mission kernels Hn using the Volterra theory [10,
7]. Hn;ji1i2::in(f1;f2;::fn) describes the n-th order ef-
fect of frequency components fk at the input port
ik on the frequency components f1 + f2 + :: + fn
at output port j, where conjugate complex compo-
nents are denoted by a negative fi [10]. While the
pure Volterra approach requires a detailed expan-
sion of the Volterra series, we avoid this step by
allowing any polynomial interaction between real
and complex parts of signal components up to the



desired order O. The increase in the number of
terms is compensated by a gain in symmetry that
facilitates the parameter search.

Thus the local model is de�ned as

y =
X

e1+e2+::+eD<=O

� � xe11 � xe22 � ::: � xedD (7)

and the order of the local model is traded o� with
the complexity of the global architecture (�g.2).
While the polynomial expansion is very e�cient
within a limited input domain of interest, wide
ranges of frequency and amplitude are best cap-
tured by an e�cient split of the application domain
into sub-domains of in
uence.

4 Parameter Estimation

The model parameters are found from a variant
of the Expectation-Maximization (EM) algorithm,
which computes the most likely cluster parame-
ters by iterating between an expectation step and
a maximization step [2, 5]. Conventional EM up-
dates are used to estimate the unconditioned clus-
ter probabilities p(cm), cluster locations �m and
covariances Cm. Pseudoinverses of the cluster
weighted covariance matrices are used to update
the local model parameters �m.

E-step: Given a starting set of parameters, we
�nd the probability of a cluster given the data:

p(cmjy;x) =
p(y;xjcm) p(cm)

p(y;x)
(8)

=
p(y;xjcm) p(cm)PM
l=1 p(y;xjcl) p(cl)

where the sum over clusters in the denominator
lets clusters interact and specialize in data they
best explain.

M-step: Now we assume the data distribu-
tion correct and maximize the likelihood function
changing the cluster parameters, starting with the
cluster weights:

p(cm) =

Z
p(cmjy;x) p(y;x) dy dx (9)

�
1

N

NX
n=1

p(cmjyn;xn)

Given p(cm) we de�ne the cluster-weighted expec-
tation of any function �(x) as

h�(x)im �

Z
�(x) p(xjcm) dx (10)

�
1

N p(cm)

NX
n=1

�(xn) p(cmjyn;xn)

which lets us update the cluster means and the
cluster weighted covariance matrices :

�m = hxim (11)

[Cm]ij = h(xi � �i)(xj � �j)im

The derivation of the maximum likelihood solution
for the model parameters yields

�m = B�1m � Am (12)

with [Bm]i;j = hfi(x) � fj(x)im and [Am]i;j = hyi �
fj(x)im. Finally the output covariance matrices
associated with each model are estimated:

Cm;yy = h[y � f(x; �
m
)] � [y � f(x; �

m
)]T im (13)

We iterate between the E- and the M-step un-
til the total likelihood of the data, as de�ned by
the product of all data likelihoods (equ.1) does not
increase further (�g. 4b).
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Figure 4: convergence of a 3-cluster/locally-
quadratic Volterra coe�cient model

.

5 Experimental Results

5.1 Time Domain Approach

Fig.5 illustrates the test device, simulated to gen-
erate data for the demonstration of the time do-
main approach: a bi-polar junction transistor is



embedded in a self-biased circuit functioning as a
simple ampli�er [11]. Di�erent operating points of
the device are selected by applying dc-potentials
to Vbb and Vcc . An amplitude modulated signal is
added to the dc-o�set at Vbb. The modeling task
consists in predicting the output-currents IBE and
ICE , given the input voltages.

Vcc

Vbb

Vb

Rb

B

E

Re

Vce

C

Rc Ic

Figure 5: Test device for the time domain ap-
proach: a self-biasing transistor circuit. [11].

Fig.7a) shows how the data interpolates be-
tween bias points. For training a selection of bias
points was used, while the test set was chosen from
a larger number of bias points. The predicted out-
of-sample test data is unrecognizibly similar to the
true simulated output data and the relative RMS

was smaller than 0:005 across the data set.

[11] uses radial basis functions to model input-
output patterns for di�erent bias points. Basis
terms are �xed in speci�c input locations, so that
bias points that haven't been observed in training
can be computed by explicitly interpolating the
basis functions of adjacent training points. Our
result matches the error reported in [11]. Yet, in
our system clusters automatically go where they
are needed and interpolate appropriately. Hence
our algorithm is not speci�c to the transistor ex-
ample where bias points are chosen discreetly, but
works for arbitrary devices. Also, the architecture
remains general and applicable in di�erent settings

such as the one introduced in the next section.

5.2 S-Parameter Approach

Fig.(2) illustrates how local and global complex-
ity contribute to the approximation result in the
S-parameter approach. The data is taken from a
device with a single input component at 1.5 GHz
and 4 harmonic output components at 1:5, 3, 4:5
and 6 GHz. It is approximated by combinations of
varying numbers of clusters and varying polyno-
mial order. The purely linear approximation (2a)
is unable to capture the data characteristics and
the �fth order polynomial model (2b) still performs
purely. The approximation with 5 linear models
(2c) is doing well, while the approximation with
only 3 second order polynomials is practically per-
fect (2c).
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Figure 6: Test Device for S-parameter approach.

The model was further tested on data obtained
from realistic simulations of an ampli�er (�g.6)
with two input-ports (input 1 and 2 at port 1 )
and a single output-port 2 [10]. There were one
input component (1:5 GHz) at input-port 1 and
three components (1:5, 3 and 4:5 GHz) at input-
port 2, causing output components at 1:5, 3 and
4:5 GHz. Thus, the model predicts a 3-dimensional
complex output vector, given a 4 dimensional com-
plex input vector.

Multiple simulations were done with strongly
varying boundary conditions. Fig.3 shows the ap-
proximation results from a particular simulation.
The relative RMS error was at worst 0:001% for the
fundamental and 0:5% for the second harmonic; on
some of the test sets a signi�cantly better perfor-
mance was achieved. Local third order approxi-
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Figure 7: Time domain modeling. a) Amplitude modulated data from the ebers-moll transistor circuit: the
two top rows represent the two bias points, the two middle rows the input voltages and the two bottom
rows the predicted output currents, where the prediction is plotted above the measured (simulated) data
to illustrate the similarity. b) data from the same circuit, but with stronger non-linear behavior: row 2
and 3 indicate the input voltages and the two bottom rows indicate the predicted output currents. The left
column shows part of the training data, the right column shows test data.

mations performed best, which was expected given
data ranging from the fundamental to the second
harmonic. The di�erence between single and mul-
tiple cluster models should become more signi�-
cant when absolute frequency will be varied and
added to the feature vector.

6 Conclusions

It has been shown how the cluster-weighted archi-
tecture automatically allocates model parameters
in the data space. It extends existing modeling

techniques to complex systems that capture a de-
vice across any input range without losing perfor-
mance in particular sub-domains. The experimen-
tal approximation of two particular ampli�ers was
shown to be arbitrarily accurate, given su�cient
complexity of the model architecture.

We introduced two local architectures that ex-
tend the typical representation of current circuit
simulation and test equipment. It was shown
how our method predicts the output currents in
the time domain, given di�erent operating points
of the device. This approach is appropriate for



systems that are insu�ciently described by their
steady state behavior. Furthermore it was demon-
strated how the S-parameter characterization of
linear devices can be extended to higher order
polynomial approximations (Volterra series) and
how this representation can be elegantly embed-
ded in the cluster-weighted framework so that a
wide range of driving signals is modeled in a single
estimation step.

Our approach is yet to be tested on measure-
ments of real world devices. Because our frame-
work easily adapts to local and global data com-
plexity, we expect it to outperform conventional
non-linear techniques when applied to measured
non-idealized and noisy data. Apart from the
examples shown in this paper Cluster-Weighted
Modeling can handle non-trivial systems that
have discontinuous input-output characteristics or
stochastic behavior.
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