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Figure 1: The speech to reality system turning a prompt into a physical object via 3D generative Al and robotic assembly.

Abstract

We present a system that transforms speech into physical objects
using 3D generative Al and discrete robotic assembly. By leverag-
ing natural language, the system makes design and manufacturing
more accessible to people without expertise in 3D modeling or
robotic programming. While generative Al models can produce a
wide range of 3D meshes, Al-generated meshes are not directly suit-
able for robotic assembly or account for fabrication constraints. To
address this, we contribute a workflow that integrates natural lan-
guage, 3D generative Al, geometric processing, and discrete robotic
assembly. The system discretizes the Al-generated geometry and
modifies it to meet fabrication constraints such as component count,
overhangs, and connectivity to ensure feasible physical assembly.
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The results are demonstrated through the assembly of various ob-
jects, ranging from chairs to shelves, which are prompted via speech
and realized within 5 minutes using a robotic arm.
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1 Introduction

Recent advances in 3D generative Al are changing the future of
design and manufacturing by allowing the rapid creation of 3D
digital assets. Tools such as Get3D [Gao et al. 2022], Shap-E [Jun
and Nichol 2023], AssetGen [Siddiqui et al. 2024] can transform text
prompts into 3D shapes in seconds. With decreasing generation
times and computational costs, the potential for instant, natural
language-driven design and manufacturing is becoming increas-
ingly feasible. The ability to create physical objects through speech
input could enable people to create objects on demand by simply
articulating their needs [Ballagas et al. 2019]. However, translating
these digital creations from 3D generative Al or text-to-3D mod-
els into physical objects remains a challenge due to fabrication
constraints and manufacturing time [Abdelaal 2024].

To address these constraints, this paper presents an automated
system that transforms speech into physical objects through gener-
ative Al and discrete robotic assembly (Fig. 1). Generative Al models
can generate a wide variety of geometries, requiring a workflow
that can adapt to user prompts, geometric variability, and phys-
ical constraints. Our approach utilizes a Large Language Model
to process natural language into structured input for generative
Al a discretization method to convert Al-generated meshes into
component-level representations suitable for robotic assembly, and
geometric processing for fabrication constraints.

We identified key fabrication constraints and developed geomet-
ric processing steps to automatically modify Al-generated meshes
for assembly feasibility. Assembly feasibility is defined as the condi-
tion under which an Al-generated design (a) fits within the robot’s
workspace, (b) uses no more components than are available in in-
ventory, (c) remains within the allowable limits for unsupported
overhangs and vertical stacks, and (d) maintains face connectivity
from the ground to all components.

Additionally, Generative AI models can rapidly produce 3D
models, making them well-suited for iterative design workflows.
While generative models can produce a variety of digital objects in
seconds, physically realizing these designs can be slow, resource-
intensive, and often unsustainable at scale [Kyaw et al. 2025] . Rather
than aiming to replace traditional manufacturing methods, we argue
that there is a need to explore new pipelines for creative co-creation
between humans, Al and robotic systems. Through this paper, we
present three key contributions:

e An integrated pipeline that connects a text-to-3D generative
Al model with discrete robotic assembly.

o Geometric processing methods that enable the assembly of
Al-generated objects by enforcing fabrication constraints.

e A demonstration of how the Speech-to-Reality framework
aligns with the speed and generative capacity of 3D Al mod-
els to support on-demand and sustainable production (Fig. 1).

2 Related Work
2.1 3D Generative Al for Physical Objects

3D generative Al models such as DreamFusion [Poole et al. 2022],
Neuralangelo [Li et al. 2023], and LATTE3D [Xie et al. 2024] are
capable of generating meshes in just seconds, lowering the barrier
of entry to 3D content creation.
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Despite these advancements in 3D generative Al, there remains
limited work on translating the outputs from Al generated out-
put into physical objects [Li et al. 2024]. Previous efforts using
generative Al to create physical objects have focused mainly on
3D printing [Danry and Giizelis 2023]. For example, prior work in-
cludes a framework that integrates text and sketch input to enhance
the manufacturability of Al-generated designs for 3D printing [Ed-
wards et al. 2024], a workflow that uses generative design to create
parts compatible with 3D printing or CNC machining constraints.
[McClelland 2022], and a system that applies generative Al to stylize
existing 3D models based on functionality for 3D printing [Faruqi
et al. 2023]. These approaches predominantly emphasize the use of
Generative Al for 3D printing or CNC machining of small objects
or parts. Although generative Al can create 3D models of any scale
in seconds, conventional digital fabrication can take hours or days,
depending on the size of the object, leading to a disconnect between
Al capabilities and physical production.

2.2 Natural Language for 3D Geometry

Recent studies have explored how Large Language Models (LLMs)
can be embedded within Computer Aided Design (CAD) software
to simplify design tasks [Zhang et al. 2025]. Previous projects
have demonstrated using text and images to modify CAD models.
[Daareyni et al. 2025]. Plugins such as CADgpt for Rhino3D demon-
strate that natural language can drive parametric modeling and
shape manipulation, potentially reducing the learning curve for new
users [Kapsalis 2024]. While these systems shift design into natural
language, they still rely on manual downstream steps for physical
fabrication: users must export models, slice for printing/CAM, and
assemble parts themselves. Makatura et al. showcased the potential
of ChatGPT in design and manufacturing by using it to generate
the design of a laser-cut shelf [Makatura et al. 2023]. While Al tools
like GPT and Text-to-Mesh models can sometimes create designs
that can be digitally fabricated, manual assembly is still required.
Therefore, this paper introduces a fully automated approach that
connects natural language, 3D generative Al, and robotic assembly
to integrate the entire production process.

2.3 Automated Robotic Assembly Workflows

Prior research has focused on automating various aspects of the
robotic assembly process. Tian et al. present a physics-based method
for assembly sequence planning using graph neural networks [Tian
et al. 2024]. Gandia et al. present a path planning workflow that ad-
justs path planning parameters according to the assembly geometry
[Gandia et al. 2019]. Macaluso et al. demonstrated the use of Chat-
GPT for robotic programming by decomposing complex tasks into
sub-tasks [Macaluso et al. 2024]. These studies have mainly explored
automated robotic assembly workflows with human-generated de-
signs or conventional CAD software. However, integrating the
outputs of 3D generative Al model may require different considera-
tions in fabrication constraints, time, and sustainability. Generative
Al can rapidly create digital assemblies, but producing physical
ones can still be time-consuming. Each new design requires a new
set of components to be fabricated before assembly. While it may be
hard to replace conventional CAD workflows, this paper proposes
integrating generative Al with discrete modular robotic assembly.
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2.4 Modular and Discrete Systems

Modular systems highlight how prefabricated components can be
reused without the need to manufacture new parts for each assem-
bly. Previous studies on Voxel-based systems have demonstrated
sustainable frameworks where unit cells, components, or voxels are
designed for ease of connection and reassembly [Jenett et al. 2019],
[Abdel-Rahman et al. 2022], [Gregg et al. 2024], [Smith et al. 2024],
[Smith et al. 2025]. However, prior research relied on manually
designed predefined structures. In contrast, this paper introduces a
novel framework where the outputs from a 3D generative Al model
determine the assembly. To support this, the Speech-to-Reality sys-
tem presents an automated pipeline that transforms user inputs into
feasible voxel-based assemblies while accounting for the variability
of Al generated meshes, user prompts, and fabrication constraints.

3 Methods

Speech to Reality is an automated system that integrates: (a) nat-
ural language processing, (b) 3D 3D Generative Al, (c) geometric
processing for fabrication constraints, and (d) hardware integration
for robotic assembly (Fig. 2). A key contribution of this work is
identifying and integrating all the necessary components to go
from 3D Generative Al to discrete robotic assembly, in a way that
addresses fabrication constraints, enables user-driven on-demand
production, and supports sustainable creation. Since the pipeline is
modular, each module can be swapped for alternative implemen-
tations. While we present a specific implementation, the overall
workflow is extendable to other tools.

3.1 Natural Language Processing to Structured
Input for Generative Al

To process speech into structured input, the system first converts

spoken language into text. It then uses a LLM, GPT-4 Turbo [OpenAl

2025], to analyze the transcription and identify the object the user

wants to assemble. The LLM is tasked with distinguishing between

actionable commands involving physical objects and non-physical

“A table with

))) one leg”
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Text
Prompt

User Speech

Input

SCF 25, November 20-21, 2025, Cambridge, MA, USA

concepts unsuitable for 3D generative Al by using a guided prompt.
The guided prompt was structured to assist the language model
interpret various user inputs effectively. If the prompt identifies a
physical object, the system extracts and returns it as a response. If
no object is detected, the response returns "false," and the system
would ask the user to restate their command to request a physical
object. The prompt we used is: "Your task is to analyze the given text
and determine whether it refers to a physical object or shape that
is not an abstract idea. If it refers to something physical, return the
relevant phrase that describes it; otherwise, respond with ’false." To
ensure the correct format, the LLM is also given the two examples
listed below.

« Object Request: "I need a shelf " — Response: "shelf"

« Non-Object Request: "Knowledge" — Response: "false"

3.2 Al-Generated Mesh to Component
Discretization for Robotic Assembly

The LLM output is used as a text prompt for the generative Al
model to create a mesh. However, the outputs from 3D generative
Al models are typically in the form of meshes or point clouds, which
are not directly suitable for robotic assembly. To address this, we
developed a component discretization algorithm that converts an
Al-generated mesh into a component-level representation suitable
for robotic assembly.

The script starts by post-processing the Al-generated mesh by
unifying normals, welding vertices, and eliminating geometric in-
consistencies. The bounding box of the mesh is then calculated
along the x, y, and z axes to determine its overall dimensions.
To ensure that the object can be physically assembled within the
workspace, the bounding box and the mesh is uniformly scaled to
fit the assembly space. This also verifies that all the component
positions fall within the reachable workspace of the robotic arm,
ensuring that each part can be placed without violating the arm’s
kinematic constraints. In the discretization process, the bounding
box encapsulating the scaled Al generated mesh is divided into a 3D
grid by generating planes along the x, y, and z axes. These planes

Robotic
Assembly

Discretized
Components

Assembly
Sequence

Natural Language Al Generated Geometric Processing Based On Hardware
Processing Mesh Fabrication Constraints Integration
(Speech Recognition, (Text-to-3D (Component Count, Overhangs, (Voxel Component,

Large Language Model) Generative Al Model )

Vertical Stacks, Connectivity)

Conveyor Belt End-Effector)

Figure 2: Data pipeline and software components of the speech-to-reality system.
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are spaced at regular intervals based on the size of the individual
components. In our experiments, we use modular components mea-
suring 10 cm x 10 cm x 10 cm. After the bounding box is divided
into a 3D grid based on the size of the components, a Boolean
intersection algorithm checks whether each grid cell contains a
part of the mesh. (Fig. 3) If any portion of the mesh is inside a cell,
it is marked as true. Otherwise, it is marked as false. The script
then automatically assigns an assembly component to every grid
cell marked true, generating a component-level representation of
an Al-generated 3D mesh that can be robotically assembled. See
Algorithm 1.

In this study, we used Meshy.ai as the 3D generative Al model
[Meshy 2025], which produces meshes aligned to a Cartesian grid.
This ensures a consistent orientation, with the Z-axis of each ob-
ject always upright. Aligning output meshes to a Cartesian grid is
important because the orientation directly affects the results of the
discretization process.

Kyaw et al.

3.3.1 Component Count. Al-generated designs can be decomposed
into assemblies that require varying numbers of components. How-
ever, in real-world settings, the number of physical components
available may be limited, which introduces a constraint on what
can be built. In our setup, we only have 40 physical components
for assembly.

To address this, the system counts the total number of com-
ponents in the assembly and checks if it exceeds the number of
available physical components. If the count doesn’t exceed the
number of available components, the assembly passes the compo-
nent count check. Otherwise, it fails. The system has an automated
failure handling mechanism that makes modifications to the assem-
bly geometry. When the component count exceeds the available
number of physical components, the system iteratively applies a
uniform scale reduction equivalent to the size of a single compo-
nent, then reruns the discretization process. This process continues
until the total component count falls within the allowable limit.

Algorithm 1 Component Discretization for Robotic Assembly

Algorithm 2 Component-Count Check with Auto-Rescaling

Require: AlGeneratedMesh, ComponentSize, AssemblySpace

Ensure: AssemblyGeometry is component-level representation of
AlGeneratedMesh
function CoMPUTEBOUNDINGBOX(AIGeneratedMesh): Compute
bounding box along x, y, z axes of a geometry
function ScALEToF1T(AIGeneratedMesh, BoundingBox, Assem-
blySpace): Uniformly scale geometry to fit the AssemblySpace
function DiscrReTIZE(BoundingBox, ComponentSize): Generate
3D grid over BoundingBox with spacing from ComponentSize
function INTERSECT(GridCell, AIGeneratedMesh): Returns true
if GridCell intersects AlGeneratedMesh
BoundingBox = ComPUTEBOUNDINGBOX(AIGeneratedMesh)
AlGeneratedMesh = ScALEToF1T(AIGeneratedMesh, Bounding-
Box, AssemblySpace)
Grid = DiscreTIZE(BoundingBox, ComponentSize)
AssemblyGeometry = 0
for each GridCell in Grid do

if INTERSECT(GridCell, AIGeneratedMesh) == true then
Add component at GridCell to AssemblyGeometry
end if

end for
return AssemblyGeometry

3.3 Geometric Processing of AI-Generated
Designs for Fabrication Constraints

Assembly feasibility depends on whether an Al-generated geome-
try can be physically constructed using the selected components
and robotic system. From an Al-generated mesh, the previous step
produced a component-level assembly geometry that provides the
assembly coordinates. The system applies geometric processing
techniques to analyze and modify these coordinates to satisfy fab-
rication constraints. In this research, we identify key fabrication
constraints that a pipeline like Speech-to-Reality must handle to
account for the variability of Al-generated assemblies. These con-
straints include the number of components, overhanging elements,
connectivity between parts, and the reachability of the robotic arm.

Require: AssemblyGeometry, MaxComponents
Ensure: Modified geometry produces no more than MaxCompo-
nents components
function Di1ScRETIZE(geometry): Returns grid cells occupied by
geometry based on component size
function ScaLE(geometry): Uniformly scales down the assembly
geometry by one component size
AssemblyCoordinates = DISCRETIZE(AssemblyGeometry)
AssemblyCount = |AssemblyCoordinates|
while AssemblyCount > MaxComponents do
AssemblyGeometry = SCALE(AssemblyGeometry)
AssemblyCoordinates = DISCRETIZE(AssemblyGeometry)
AssemblyCount = |AssemblyCoordinates|
end while
return AssemblyGeometry

3.3.2  Overhang Detection and Vertical Stacks. Although Al-generated
assemblies can take on various shapes in the digital world, certain
geometric configurations, such as cantilevers or tall, unsupported
stacks, may lead to failure during physical fabrication. To evaluate
real-world constraints, we conducted physical empirical tests us-
ing our modular components and found that cantilevers extending
beyond three unsupported elements and vertical stacks taller than
four components without lateral support tend to be unstable. This
number may vary for other types of components and robot setups.

Based on this finding, we implemented an overhang detection
algorithm. The system performs an overhang check by identifying
any components that lack vertical support and extend directionally
beyond the overhang limit. If a cantilever exceeds the allowable
limit, the system iteratively rescales the geometry along the axis of
the overhang by one unit, repeating this process until all overhang
violations are resolved. A similar procedure is applied to vertical
stability: the system detects columns that are vertically stacked
without sufficient lateral support. If any such stack exceeds the
predefined height threshold, in our case this number is four, the
geometry is scaled down along the vertical axis until the violation
is resolved. See Algorithm 3 for implementation details.
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Algorithm 3 Overhang Check with Dynamic Rescaling Algorithm 4 Connectivity-Aware Assembly Sequence Generation
Require: AssemblyGeometry, OverhangLimit, VerticalLimit Require: AssemblyCoordinates
Ensure: AssemblyGeometry is within the OverhangLimit Ensure: Sorted AssemblyCoordinates
function DiscRETIZE(geometry): Returns grid cells occupied by Sort AssemblyCoordinates by increasing z, then x, then y
geometry based on component size Placed < 0 Set of already placed components
function ScaLe1D(geometry, axis): Uniformly scales down ge- Sequence « [ ] Final ordered sequence
ometry along axis by one component size while AssemblyCoordinates # () do
AssemblyCoordinates < DISCRETIZE(AssemblyGeometry) for each coord in AssemblyCoordinates do
for each cell (x, y, z) with no support at (x,y,z—1) do if coord.z = 0 or coord is adjacent to any p € Placed then
d < number of unsupported cantilever components Add coord to Sequence
tfaxis « direction of overhang (e.g., X or §) Add coord to Placed
while d > OverhangLimit do Remove coord from AssemblyCoordinates
AssemblyGeometry « ScALEID(Geometry, zfaxis) end if
AssemblyCoordinates < D1scRETIZE(Geometry) end for

if no component was placed in this iteration then

Recalculate d and cia is
* Find coord € AssemblyCoordinates with minimum dis-

end while
end for tance to any p € Placed
for each (x, y, z) with no lateral support at (x = 1,y + 1,z) do Add coord to Sequence
h « number of consecutive unsupported vertical stacks Add coord to Placed
while A > VerticalLimit do Remove coord from AssemblyCoordinates
AssemblyGeometry «— ScaLE1D(Geometry, Z) end if
AssemblyCoordinates < D1sCRETIZE(Geometry) end while
Recalculate h return Sequence
end while
end for Discretization of Assembly Component Sorted Coordinates
return AssemblyGeometry Al Generated Mesh into Coordinates to Check for Feasible Robotic
Assembly Components Fabrication Constraits Assembly Sequence

This directional rescaling mechanism ensures that the final as- c2elelte, 191625 2?21726}3;)3%% .
sembly remains within the fabrication constraints without uni- el 5 Wﬁwzwogﬂz"' .
formly shrinking the entire geometry. Instead of simply removing . s 87T
overhanging or unstable components, which could leave structural - °

0 2

gaps and compromise the intended design, the scaling approach
adapts the geometry incrementally while preserving its overall

K X R X User Speech Input: “A stool with four legs”
form. See Algorithm 3 for implementation details.

3.3.3 Component Connectivity and Assembly Sequence. In an Al-

generated assembly, the components are not sorted in any specific 2%8 j o0
order. However, in discrete robotic assembly, a component can only 196200737 %41;26
be placed if it is connected to either the ground or an already placed 54 1
component. Additionally, the assembly sequence needs to be sorted 547698 o' 42
to prevent the robotic arm from colliding with previously assembled To 32
components.

To address this, the sequence is first sorted by z-values, enabling
the robot to construct the assembly layer by layer from the bottom
up. Within each layer, the components are further sorted by x- 27110 156,19
values, followed by y-values. However, this simple sorting method 189138 3@6
does not fully account for structural connectivity. To ensure that 7
each component shares at least one face with a previously placed 6
component, we implement a connectivity search algorithm. This 5
algorithm prioritizes components based on their proximity to al- 14052

ready assembled ones. Specifically, it searches for the components
with the shortest distance to a previously placed component. The User Speech Input: “A table with one leg”
optimized assembly sequence is saved as a sorted list of coordinates
(Fig. 3). See Algorithm 4. To sum up, the geometric processing starts
from an Al-generated mesh, to discretized assembly components, to
assembly coordinates, and finally to an ordered assembly sequence.

Figure 3: From Al generated mesh to discretized components,
to assembly coordinates, to sorted assembly sequence.
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3.4 Automated Path Planning for Robotic
Assembly

After ensuring that the Al-generated sequence meets fabrication
constraints, a path planning procedure is required for robotic as-
sembly. We developed an automated path planning algorithm using
the Python-URX library. The algorithm takes in three key param-
eters. Assembly Coordinates: A list of sorted (x, y, z) coordinates
based on the Al-generated object. Source Coordinate: The (x, y, z)
position of the component’s pick location. Movement Plane: The
z-value at which the robot can move safely without colliding with
previously assembled components or the conveyor belt.

When the program starts, the robot moves from its resting posi-
tion to the movement plane. For the pick operation, the robot first
moves to the (x, y) position of the source coordinate while remain-
ing in the (z) position of the movement plane. Then it moves to the
(z) position of the source coordinate, activates the gripper, picks the
component, and returns to the (z) position of the movement plane.

For the place operation, the robot moves to the (x, y) position of
the assembly coordinate while remaining in the (z) position of the
movement plane. It then moves to the (z) position of the assembly
coordinate, closes the gripper, picks up the component, and returns
to the (z) position of the movement plane. These sets of operations
are repeated for each component in the sorted assembly sequence.
The path planning algorithm repeats this for each coordinate in the
sorted assembly sequence until the assembly is complete.

Algorithm 5 Path Planning for Automated Assembly

Require: HomePosition (xp, yp, z5), MovementPlane (z,), Assem-
blyCoordinates (xg, Yqg, 24), SourceCoordinate (xs, ys, zs),
Move robot to HomePosition (xp, yp, z,)

Move robot to (xp, Yp, 2m)
for each (xg, yg, 24) in AssemblyCoordinates do
Move to (xs, Ys, zm)
Move to SourceCoordinate (xs, ys, zs)
Gripper Close () Activate gripper to pick component
Move to (xs, Ys, 2m)
Move to (xg, Ya, Zm)
Move to AssemblyCoordinate (xg, Yq, 2q)
Gripper Open () Release gripper to place component
Move to (x4, Ya, Zm)
end for
Move robot to HomePosition (xp, yp, z,)

3.5 Prefabricated Components for Discrete
Assembly and Disassembly

The system enables the robotic assembly of modular components
that can be assembled and disassembled. Each component is made
up of six 3D-printed faces forming a cuboctahedron geometry. Each
face is embedded with magnets, ensuring secure attachment be-
tween adjacent components while allowing for reversible connec-
tions (Fig. 4). The magnet-based connections allow fast, tool-free
assembly and disassembly. In this research, pre-fabricated compo-
nents are used to demonstrate the system, not to replace conven-
tional engineering-grade fabrication.

Kyaw et al.

Figure 6: Conveyor belt for automated assembly.

3.6 Custom End-Effector for Robotic Assembly

Since our system repeatedly reuses the same components, we uti-
lize a custom robotic end-effector to ensure consistent assembly.
The system employs a 6-axis robotic arm, specifically the Universal
Robot UR10 [Robots 2025]. The gripper end effector is attached to
the mounting plate of the robotic arm. Communication between
the robot and the gripper is facilitated using the built-in digital I/O
pins from the UR10 robotic arm to the ATtiny412 microcontroller.
The gripping mechanism follows a design to minimize the use of
actively controlled moving parts [Jenett et al. 2019]. A single actua-
tor rotates a plus-shaped latch clockwise by 45°, establishing four
contact points with the component’s top face (Fig. 5). Additionally,
reused components may have minor deformations from wear and
tear. To address this, the end effector has geometric indexers that
ensure precise alignment. These serve as passive self-correcting
mechanisms for secure attachment.
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3.7 Conveyor System for Reuse and Sustainable
Production

A custom conveyor belt system is developed to fully automate the
robotic assembly process. In our experiments, we used a conveyor
belt that can hold a sequence of horizontally connected voxels as
feedstock. (Fig. 6). After each assembly, all disassembled compo-
nents are returned to the conveyor system, making them imme-
diately available for the next object fabrication. This continuous
recirculation of components reduces the need for new materials
and enhances the efficiency of on-demand fabrication. By enabling
the reuse of prefabricated modules across multiple assemblies, the
system minimizes material waste and supports a circular model of
production.

4 Results and Experiments

4.1 Natural Language User Input for 3D
Generative Al

The system leverages LLMs to interpret user requests and distin-
guish between abstract concepts and physical objects. For example,
it accurately processes commands like "make me a coffee table" as
"coffee table" and "I want a simple stool" as "simple stool" It also
successfully handles functional specifications such as "a shelf with
two tiers,' “assemble me a table with one leg” (Fig. 7). or "a stool
with four legs" (Fig. 7). In addition to physical requests, the system
effectively identifies abstract prompts, such as "create beauty" or
"I need something to hold memories," and correctly labels them as
"false." However, the system struggles when abstract concepts are
paired with physical requests. For instance, with the input "I need
a box to hold memories," it correctly filters out the abstract portion,
but still outputs "box." Optimizing the structure of the prompt could
improve its ability to handle more nuanced inputs.

“A stool with four legs” “I want a short chair”
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4.2 Fabrication Constraints and Feasibility of
Al-Generated Objects via Robotic Assembly

The system demonstrates various geometric processing methods
to ensure the feasibility of Al-generated objects through discrete
robotic assembly. The experiments demonstrate that the system can
successfully assemble a diverse range of object requests, from func-
tional items like stools, chairs, tables, and shelves to unconventional
objects, such as a dog or the letter T (Fig. 7).

To evaluate the contribution of each geometry processing con-
straint, we performed an ablation study across four user prompts:
stool, shelf, letter T, and table. In the ablation study, we evaluated
the contribution of each geometry processing constraint to the
overall robustness of the complete pipeline. This is done by com-
paring the full pipeline against four ablated versions, each missing
one of the following modules: (1) component inventory check, (2)
overhang check, (3) vertical stack check, and (4) connectivity-aware
assembly sequencing. The baseline for all ablation variants begins
with the Al-generated mesh, which is uniformly scaled to fit within
the assembly workspace (60 cm x 50 cm x 60 cm) and discretized at
a 10 cm resolution.

Table 1 summarizes the results of the ablation study, where in-
dividual geometric processing modules were selectively disabled
to evaluate their impact. The findings show that component count
is especially critical for objects like the stool and shelf, which oc-
cupy a large volume in the assembly space. Overhang detection
is important for objects with long cantilevers, such as the shelf.
Vertical stacking becomes essential for tall objects like the letter "T".
Connectivity-aware sequencing is crucial for objects with branch-
ing overhangs, including the stool, shelf, and table. The study re-
veals conditions under which the system may fail, showing that
the importance of each geometry processing step depends on the
object’s shape.

“Make me a coffee table” "I want a tall dog"

Figure 7: Objects created from the Speech-to-Reality workflow, with components being reused for multiple prompts.
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Table 1: Assembly Feasibility of AI-Generated Objects Without Individual Geometric Processing Modules
Without Without Without Without Complete Assembly

Object  Component Count Check Overhang Detection Vertical Stack Check Connectivity Search Pipeline
Stool Failed Passed Passed Failed Passed
Shelf Failed Failed Passed Failed Passed
Letter T Passed Passed Failed Passed Passed
Table Passed Passed Passed Failed Passed

The complete pipeline assembled all objects successfully, show-
ing the value of combining multiple constraint checks (Table 1)

4.2.1 Component Count. To ensure that Al-generated designs are
feasible with a limited set of physical parts, we implement a compo-
nent count check that compares the number of required components
against a pre-defined inventory limit. As shown in Table 2, the stool
and shelf exceeded the 40-component inventory limit and failed the
component count check. Without this check, the assembly would
stop due to insufficient physical parts. With the check enabled,
the system triggers automatic geometric rescaling to reduce the
component count to within allowable limits (e.g., the stool was
scaled from 45 to 30 components , and the shelf was scaled from
60 to 32 components). The letter T and table remained within the
limits and passed without modification. These results highlight the
importance of component count validation in adapting generative
outputs to physical constraints.

Table 2: Component Count Check and Rescaling

Baseline Component Component
Object Assembly Count Check Count Rescaling
Stool 45 Components Fail 30 Components
Shelf 60 Components Fail 32 Components
Letter T 8 Components Pass 8 Components
Table 21 Components Pass 21 Components

4.2.2  Overhang Detection. To prevent structural instability during
assembly, we apply an overhang check that limits unsupported can-
tilevers to a maximum span of three units. Table 3 shows that only
the shelf failed the overhang check. Its horizontal spans exceeded
the 3-unit cantilever limit identified through physical testing. The
system responded by rescaling along the overhanging axis. Other
objects passed without modification. The overhang detection is
necessary for geometries with wide horizontal features.

Table 3: Overhang Check and Rescaling

Baseline Overhang Overhang
Object Assembly Check Rescaling
Stool 45 Components Pass 45 Components
Shelf 60 Components Fail 54 Components
Letter T 8 Components Pass 8 Components

Table 21 Components Pass 21 Components

4.2.3  Vertical Stack Detection. The vertical stack constraint limits
unsupported columns to four components. As shown in Table 4,
the letter T and table failed, each containing unstable 5-high stacks.
After rescaling the geometry along the z axis, the number of compo-
nents in the new assemblies was reduced to 7 and 20, respectively.
The stool and shelf passed unchanged. This module prevents insta-
bility in assemblies with tall, narrow elements.

Table 4: Vertical Stack Check and Rescaling

Baseline Vertical Stack  Vertical Stack
Object Assembly Check Rescaling
Stool 46 Components Pass 46 Components
Shelf 60 Components Pass 60 Components
Letter T 8 Components Fail 7 Components
Table 21 Components Fail 20 Components

4.2.4 Connectivity-Aware Assembly Sequencing. To ensure struc-
tural integrity and reachability during construction, the system
employs a connectivity-aware sequencing strategy that prioritizes
grounded and accessible components. When using a simple sorting
strategy (placing components in increasing order of z, then x, then
y), some assemblies fail since components might be placed mid-air.
For example, in letter T, naive sorting causes the robot to place the
outer ends of the horizontal bar before the center, which results in
disconnected components since the outer parts are not yet struc-
turally connected to the vertical column. In contrast, connectivity-
aware sequencing prioritizes the central segment closest to the
column, ensuring that all parts remain structurally grounded as
the assembly progresses. Similar issues occur in the stool and table,
where naive ordering leads to placements of components that aren’t
connected. Only the shelf succeeds under naive sorting, because
its geometry aligns with the sort direction and has fewer elevated
or branching components. When connectivity-based sequencing
is enabled, all assemblies are completed successfully. This demon-
strates that assembly depends on proper sequencing, particularly
in branching or overhanging assemblies.

These fabrication constraints may seem like small concerns, but
they are crucial for Al-generated designs, as Al does not inherently
account for them. Although a human can manually modify a geome-
try if something does not work, it is essential to develop automated
failure handling approaches that can automatically adjust the as-
sembly geometry to ensure assembly feasibility for Al-generated
objects. Currently, we use an algorithmic approach. Future studies
could explore the integration of this process with a physics-based
simulation environment.
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4.2.5 Calibrating Robot Motion for On-Demand Assembly. Calibra-
tion of the robotic arm’s speed and acceleration is important to
avoid failure. While increasing speed reduced overall assembly time,
it also introduced instability, particularly when placing cantilevered
components (Fig. 8). Assembly failures can result from vibration or
impact forces caused by both the robot arm and the components.
Although various control strategies can improve stability and preci-
sion, this paper shows that a basic trial-and-error speed calibration
meets the minimum requirement for successful assembly.

We completed a basic calibration using an Al-generated stool
as the test object. The process begins with an initial velocity of
1 mm/s, gradually increasing in increments of 0.5 mm/s until a
failure is detected. Acceleration is calibrated at fixed ratios of 1:1
or 1:2 relative to the maximum velocity. The calibration results are
presented in Table 5. Failures occurred when the max velocity is
at 2.0 mm/s with a velocity-to-acceleration ratio of 1:1, and at 2.5
mm/s with a velocity-to-acceleration of 2:1. Based on these results,
a maximum velocity of 2 mm/s and an acceleration of 1 mm/s? were
used to successfully assemble the objects shown in (Fig. 7).

Table 5: Velocity, Acceleration, and Assembly Failure

Velocity to Acceleration Velocity to Acceleration

Ratio 1:1 Ratio 2:1
Velocity ~ Acceleration Assembly Acceleration Assembly
1.0 mm/s 1.0 mm/s? Pass 0.5 mm/s? Pass
1.5 mm/s 1.5 mm/s? Pass 0.75 mm/s? Pass
2.0 mm/s 2.0 mm/s Fail 1.0 mm/s? Pass
2.5mm/s 2.5 mm/s Fail 1.25 mm/s? Fail

Although calibrating the robot’s speed may appear minor, we
identify it as an essential step to ensure reliable interactions be-
tween the robot and the materials, especially in an automated
pipeline like Speech to Reality. In this work, we demonstrate that
a simple trial-and-error calibration is effective to determining a
workable velocity and acceleration. Because our components use
passive magnetic alignment and tolerate small pose errors, we found
that a simple empirical tuning of velocity/acceleration was suffi-
cient. However, future studies could explore more advanced control
strategies, such as Model Predictive Control or motion/force hybrid
control, if higher precision or adaptability becomes necessary.

Figure 8: Assembly failing at different stages due to impact
and vibration during calibration
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Figure 9: Assembly of “A Simple Stool” at different stages.
Total Assembly Time: 3 Minutes and 36 Seconds

4.3 On-Demand Assembly and Speed

While 3D generative Al can rapidly create 3D models, making
physical objects can be time-consuming. Discrete robotic assembly
could potentially complement the rapid generation capacity of Al
by reducing production time by composing larger objects from
smaller pre-fabricated components. In Table 6, we demonstrate that
discrete assembly can construct objects with volumes ranging from
4279 cm3 to 7356 cm3 in 1 to 5 minutes (Fig. 9) (Fig. 10) (Fig. 11) (Fig.
12). Although discrete robotic assembly requires prior fabrication
of the modular components, we note that other methods, such as
3D printing, also involve significant preparation time (e.g., filament
loading, bed leveling, resin curing). To ensure a fair comparison
and user-facing experience, we measure fabrication time only from
the moment a user requests an object.

Table 6: Discrete Robotic Assembly Time for AI-Generated
for from Various User Prompts

User Prompt Object Volume  Time

I want a simple stool 6496 cm? 3m 36s
A shelf with two tiers 11831 cm? 5m 12s
The letter ‘T’ 4279 cm?® 1m 05s
Assemble me a table with one leg 7356 cm? 3m 41s

Currently, the resolution and speed of discrete robotic assembly
is controlled by component size. While the current component size
works for demonstrating the objects in (Fig. 7), follow-up studies can
investigate the use of smaller components to improve the resolution.
Future studies can also provide comparative insight into the trade-
offs between resolution, speed, and efficiency.
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User Prompt: “A shelf with two tiers”
Assembly Time: 5 Minutes 12 Seconds

Figure 10: User Prompt "Assemble me a shelf with two tiers”.

Assembly Time: 5 minute 12 seconds

User Prompt: “Atable with one leg”
Assembly Time: 3 Minutes 41 Seconds

Figure 11: User Prompt "Assemble me a table with one leg”.

Assembly Time: 3 minute 41 seconds

User Prompt: “The Letter T"
Assembly Time: 1 Minutes 5 Seconds

Figure 12: User Prompt: The Letter T. Assembly Time: 1
Minute 5 Seconds

Kyaw et al.

Direct comparison to other fabrication processes, such as 3D
printing, is difficult due to differences in resolution and the material
properties of the final output. As a reference point, simulating a
print of the stool on a large format FDM printer in standard settings
produced an estimated build time of 3 days 1 hour 45 minutes.
Printed parts would have finer resolution and different mechanical
behavior than discretely assembled structures.

This paper does not aim to replace traditional manufacturing.
Instead, it explores the potential of an automated pipeline to trans-
late Al-generated outputs into physical forms. The results mark
a step toward integrating 3D generative AI with discrete robotic
assembly to support rapid on-demand production. The on-demand
nature of the project enables faster feedback loop between humans
and AI for collaborative co-creation.

4.4 Modularity, Reuse, and Sustainable
Production of AI-Generated Objects

Every object created through the speech-to-reality system was
assembled using the same set of 40 reusable components 7. The
re-usability of components demonstrates the potential to scale pro-
duction in line with the output capacity of Generative Al with-
out increasing material waste. Through these demonstrations, we
successfully performed non-destructive assembly across multiple
objects, confirming that our components and robotic end effector
can be used more than once.

Components are reused for each assembly by disassembling the
object and placing them on the conveyor belt for the next build. The
conveyor belt system played a crucial role in enabling efficient ma-
terial handling and reuse. While we manually disassembled objects
in this study, future research can explore using the robotic arm for
disassembly or modifying an existing assembly with generative Al
and speech commands.

5 Limitations and Future Work

Although the speech-to-reality system demonstrates initial feasibil-
ity, it has several limitations that can guide future research.

The resolution and expressiveness of the fabricated output are
constrained by the size and geometry of the modular components.
Although this approach could enable on-demand assembly and
rapid prototyping of large objects, it is limited in fidelity. The ob-
jects might also be less suitable for applications requiring precise
tolerances or specialized material properties, which techniques like
3D printing or machining are better equipped to provide. Future
research might explore hybrid workflows that combine discrete
assembly with additive or subtractive techniques, enabling finer
details where necessary.

Robotic control strategies also present a potential opportunity
for improvement. In the current implementation, simple velocity
and acceleration tuning was sufficient due to the predictability of
the components. However, more fragile or irregular assembly com-
ponents will require better motion planning, dynamic adaptation,
and feedback control. Methods such as learning-based control or
force-aware assembly strategies could expand the applicability of
the system to the assembly of more delicate materials and compo-
nents in the future.
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Although our pipeline supports object reuse for circularity, it cur-
rently relies on manual disassembly. Fully closing the loop where
robotic agents not only assemble, but also disassemble or modify
existing structures could open up possibilities for dynamic environ-
ments where Al adapts and reshapes objects over time in response
to user needs. This could also enable more dynamic, bidirectional
workflows in which Al robots, and humans collaboratively iterate
on physical designs over time. Rather than treating object creation
as a fixed endpoint, such a system could support continuous re-
finement through natural language commands and environmental
feedback. Incorporating reversible assemblies and interactive edit-
ing would further strengthen the system’s potential for sustainable,
adaptive, and creative human-machine collaboration.

In addition to speech input, other modalities such as gestures or
visual cues can be integrated to enable greater human control and
better capture human intent [Kyaw et al. 2023]. This multimodal in-
teraction could allow users to more precisely specify geometry and
spatial relationships, making the system more intuitive and respon-
sive. Additionally, the current system follows a one-way trajectory
from input to output, limiting opportunities for preview and itera-
tion. Interfaces such as augmented reality could help bridge this
gap by allowing users to visualize, simulate, and refine structures
before physical assembly begins [Kyaw et al. 2024].

Finally, comparing this approach with established fabrication
methods like 3D printing is inherently complex. Differences in ma-
terial, resolution, and functional outcomes make direct benchmarks
difficult. Future work could systematically explore these compara-
tive dimensions through controlled user studies and task-specific
evaluations. Overall, the results presented here mark an early but
promising work toward systems that connect generative Al with
the physical world as a framework for rapid, iterative, sustainable,
and collaborative creation between humans, Al, and machines.

6 Conclusion

This paper introduces Speech-to-Reality, an automated system that
transforms spoken object requests into modular physical assem-
blies by connecting 3D generative Al and discrete robotic assembly.
By translating natural language into tangible output, the system
bridges the gap between Al-driven design and on-demand physical
production. In summary, this paper presents three main outcomes.

e We present an end-to-end pipeline that integrates natural
language input, 3D generative Al, component discretization,
geometric processing, path planning, and robotic assembly.
Hardware integration includes reusable voxel components,
a custom robotic end effector, and a conveyor system.

o We identify key fabrication constraints and develop geomet-
ric processing methods to enable a feasible robotic assembly
of Al-generated meshes. The system automatically modi-
fies Al-generated assemblies to account for real-world con-
straints such as inventory limits, overhang stability, vertical
stacking, connectivity, and robotic reachability.

o We evaluated different geometric processing methods, user
prompts, and assembly time. The results show that the sys-
tem can assemble a range of objects within minutes, demon-
strating its potential for on-demand, sustainable production
aligned with the generative capabilities of AL
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The research serves as a framework and outlines the essential
steps for integrating Al-driven generative design with robotic fabri-
cation. This work points towards a future of Al-driven on-demand
robotic fabrication and offers a different perspective on bridging
the gap between digital design and physical realization.
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