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A B S T R A C T

There has been a proliferation of particle systems developed to model complex systems. These are attractive
because they are mesh-free, avoiding issues associated with solver remeshing and convergence. They have
however fragmented into niches, using increasingly complex particles that introduce internal degrees of
freedom and external solver coupling. We show that, contrary to prior assumptions in the literature,
memoryless isotropic point particles can model material properties including anisotropy, hysteresis, and
failure solely through the statistics of their distributions. The resulting models offer compact code that is
straightforward to accelerate and port, can span between micro- and macro-structure, require few parameters
to set up a simulation, and unlike high-dimensional machine learning models they use a low-dimensional
representation that can be efficiently learned. Rather than deriving them as approximations to either molecular
dynamics or partial differential equations we investigate how these models can be found directly, and illustrate
this with both qualitative comparisons of phenomenology and quantitative comparisons of predictions.
1. Introduction

Molecular dynamics (MD) is fundamental, starting from an atomic
description, however it is not applicable on macroscopic time or length
scales; the frontier is milliseconds [1]. Partial differential equations
(PDEs) are also considered to be fundamental, however they are an
approximation that can break down, and their use requires selecting
both governing equations and a solver. The solvers are themselves
complex systems that can introduce unphysical dynamics, can require
repeated remeshing to follow changing geometries, and can fail to
converge.

Particle systems are a mesh-free alternative that have prolifer-
ated in application domains including Direct Simulation Monte Carlo
(DSMC) [2], Discrete Element Method (DEM) [3], Dissipative Parti-
cle Dynamics (DPD) [4], the Lattice Boltzmann Method (LBM) [5],
Lattice Gas Hydrodynamics (LGH) [6], the Material Point Method
(MPM) [7], Movable Cellular Automata (MCA) [8], Parallel Particle–
Mesh (PPM) [9], Peridynamics (PD) [10], Position Based Dynamics
(PBD) [11], and Smoothed Particle Hydrodynamics (SPH) [12]. These
can be derived as a coarse-graining of molecular dynamics, or as a
discrete approximation to continuum PDEs. They all share particles in
common, but differ in their internal degrees of freedom and the solvers
that they are coupled to.

We ask here whether mesoscale particles can be found directly
as an equally fundamental representation, rather than assumed as an
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approximation. We take as a test case modeling materials spanning
between their micro and macro structure, and choose to use the sim-
plest common denominator of particle models: memoryless isotropic
point particles (MIPS). MIPS is not new; rather, it abstracts the essential
features of a particle system.

MIPS trades computational efficiency for simplicity. This approach
can be thought of as a simulation analogy to the role of RISC versus
CISC in computer instruction sets [13]. Increasingly complex instruc-
tions were displaced by the use of a small set of simple instructions that
could be efficiently executed, moving the complexity into the compilers
that call them. Similarly, MIPS replaces complex solvers with simple
dynamics, and moves the complexity into the particle distributions.

The feasability of this approach rests on the increasing perfor-
mance and availability of computational accelerators that can take
advantage of the massive parallelism of MIPS. We will show that this
can reduce millions of lines of code in existing solvers to hundreds;
benefits of this simplicity include the ease of specifying a model, a
reduction in the number of parameters required to learn a model, the
ease of porting to new languages and architectures, and the effective
equivalence between the description of a model and its computational
implementation.

The force laws are not directly observable because they govern
the nonlinear collective behavior of the particles. They can instead
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Fig. 1. Sample force law and its effective properties.

be found qualitatively by matching phenomenology, and quantita-
tively by matching indirect experimental observations. We illustrate
these in the following section, followed by applications to modeling
anisotropy, hysteresis, and failure, and conclude with implications for
future hardware and software.

2. Methods

2.1. Particle system physics

Our models consist of a collection of point particles subject to a
pairwise, isotropic force law. Each particle’s state is described entirely
by its position, velocity, and mass. In this work we assume that all
particle masses are identical and constant, though this assumption
could be relaxed.

The equations of motion of the system are simply Newton’s laws.
The force law prescribes the magnitude of the force that acts radi-
ally between two interacting particles as a function of the distance
between them. Equivalently, one can view the pairwise interactions
as determined by a one dimensional potential function. For efficiency,
we assume the force law vanishes beyond a certain cutoff distance.
This assumption could be relaxed if a long-range force approximation
method were used, such as the fast multipole method [14].

Most macroscopic geometry descriptions are not particle based, so
a translation procedure is needed to generate the particles and set their
initial positions. In this work, we pack particles in the densest sphere-
packing with equivalent sites: a face-centered cubic (FCC) lattice [15].
As such the possible initial particle positions are specified by the lattice
pitch. The particle masses are set to achieve the desired bulk material
density, and for all the simulations discussed in this paper the initial
particle velocities are zero.

The choice of FCC particle packing effectively also imposes con-
straints on the force laws that govern particle interactions. In particular,
it is usually desired that forces vanish at the lattice pitch so that the
initial state is stable. Stiffness is determined by the slope at that point;
below the lattice pitch the repulsive force is rolled off for numerical
stability. Above it there is a restoring force which represents strength,
and finally a repulsive force out to a cutoff at the next nearest-neighbor
distance that corresponds to hardness. These features are visible in the
example force law depicted in Fig. 1.

If all particles are initialized to lattice positions, and interaction
forces vanish at the lattice pitch, then all particles remain stationary
indefinitely. To study strains, displacements, etc. boundary conditions
must be applied. We apply boundary conditions of three forms: position
constraints, velocity constraints, and force constraints. Position and
2

velocity constraints simply override the values computed by the inte-
grator. In some situations this can lead to instabilities, since the forces
that should be determining particle velocities and positions become
uncoupled from the system and may grow without bound. For this
reason, it is sometimes preferable to use a force constraint even if one’s
intent is to hold a particle in a certain location. This result can be
achieved using a simple control law, e.g. a proportional–derivative (PD)
controller, that applies the force needed to keep the particle in position.

2.2. Implementation

The complete simulation sequence entails populating CAD files with
particles, assigning properties to those particle, applying boundary con-
ditions, integrating the dynamics, and aggregating and visualizing the
results. Because of the pre- and post-processing effort this requires with
existing molecular dynamics packages such as LAMMPS [16], these
steps were implemented in dedicated workflows which were ported to
multiple accelerated computing environments for comparison.

A suite of modular C++ programs were written to facilitate compos-
ing simulations. These communicated in BASH scripts through memory
pipes; on an Intel Xeon E5-2686 the bandwidth between the mod-
ules was on the order of 400 Mbps. GPU acceleration used CUDA
kernels [17]; these were able to update on the order of a hundred
million particles per second on one NVIDIA V100. This version used
a few thousand lines of code; for comparison, NASTRAN requires over
a million lines [18].

To further simplify the code it was rewritten using Python acceler-
ators. One version used JAX [19] which automates the parallelization
of array operations, and another version used Taichi [20] which au-
tomates the parallelization of kernel outer loops. These reduced the
code to hundreds of lines, and delivered performance that was almost
comparable to the hand-tuned CUDA kernels, updating tens of millions
of particle per second on a V100.

The most expensive computational step is accumulating the forces.
Naively this is an 𝑂(𝑁2) calculation, but because of the cutoff of the
force law it becomes 𝑂(𝑁) with a spatial sort. This was parallelized
with atomic operations for the bin occupancy, and the bin storage
was dynamically allocated with a cumulative sum prior to the radix
sort, sharing a buffer equal in length to the number of particles rather
than the much larger sample volume. If some margin is added to the
cutoff distance the resulting neighbor list can be reused in subsequent
time steps as long as no particle has moved far enough to form a new
interaction pair. This requires storing the positions of all particles at the
time of the last sort, but allows the cost of the operation to be amortized
over several timesteps.

For the integrator we compared use of both symplectic velocity
Verlet and semi-implicit Euler methods [21], with similar results. A
higher-order method was not used because of the discontinuities in
these simulations. For numerical stability information must not propa-
gate faster than the speed of sound, which for a linear array of masses
and springs is equal to the square root of the elastic force divided by
the mass [21]. In the MKS units used here that is the slope of the
radially normalized force law in Pascals divided by the particle mass in
kilograms. That can be converted to a time step by dividing the lattice
pitch by the velocity; for typical values used here that gives:

10−4 m ∗
√

103 kg∕m3 ∕ 109 Pa = 10−7 s (1)

This is in good agreement with the observed stability limit, and for
these mesoscale effective particles it is much longer than the 10−15 s
time steps that are typical in molecular dynamics. For a million particle
simulation on one V100 GPU that corresponds to:

106 particles∕(108 particles∕clock s ∗ 10−7 sim s) = 105 clock s∕sim s (2)

(about a day per simulation second).
If inertial forces are not important a larger fictitious mass allows

longer time steps to be used. And a dissipative term was added to the
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Fig. 2. Comparison of simulating deformation of a chiral metamaterial, showing the agreement between experiment (left), NASTRAN (center), and MIPS using the force law (right).
Fig. 3. The simulation in Fig. 2 rerun with a force law to model a brittle material.
force law; in addition to modeling internal and external friction, it is
needed for numerical stability if the boundary conditions put energy
into the system. To maintain Galilean invariance, we make this term
linearly proportional to the difference in radial velocity between the
particles in each interacting pair.

To initialize the particle positions, we must test if each FCC lattice
site within the simulation volume is in the interior or exterior of the
relevant geometry. This process is easily parallelized, so it is not a
significant bottleneck even with hundreds of millions of particles. In
this work, we use functional (signed distance field) and mesh based
geometry descriptions. The former trivially supports interior/exterior
queries; for the latter they are implemented by ray casting. The lattice
pitch should be small relative to the minimum feature sizes in the
simulated geometries; as long as this constraint is satisfied we found
that simulation results are not sensitive to the specific value.

3. Phenomenology

To illustrate the phenomenology that is possible with these simple
models, Fig. 2 shows the agreement between experiment, NASTRAN
Finite Element Analysis (FEA) (using the default Fusion 360 solver
settings [22]), and MIPS for simulating the deformation of a chiral
metamaterial [23]. It used thousands rather than millions of lines of
code to reproduce the FEA results, and demonstrates how isotropic
particles can be used to model anisotropic properties (to be further
developed below). Figs. 3 and 4 show the same simulation run again,
just changing a few points in the force law to model brittle and viscous
materials, which conventionally require different types of solvers.
3

4. Finding force laws

Because these effective force laws are not directly observable, to
make quantitative predictions we train them by searching over sim-
ulations of experimental results. An example model was trained on
the elastic and plastic deformation of Delrin under tension. We started
with experimental stress–strain data collected on a material testing
machine, as shown in Fig. 5. The curve in this chart is the entirety
of our training data. We then modeled the same experiment virtually,
allowing us to collect a force-versus-displacement curve akin to the
experimental reference. Finally, we defined an objective function that
computes the L2 difference between the experimental and simulated
curves, and ran an optimization routine to find the force laws that
minimize this difference.

Setting up the virtual experiment consists of defining the coupon
geometry, and setting up boundary conditions and measurements. In
this case, we used a functional representation of the coupon geometry
that we constructed from the ASTM documentation [24]. The boundary
conditions fixed the positions of a layer of particles on the bottom of the
coupon, and enforced movement at a constant rate of a layer of particles
at the top. In this experiment the boundary conditions were enforced
by applying forces to particles rather than setting the positions directly,
but this technique is not essential to the work. The forces applied were
determined by a proportional–derivative controller, with a proportional
coefficient one order of magnitude greater than the maximum stiffness
in the force law, and a derivative coefficient of equal magnitude to the
dissipative term in the MIPS model.

We used cardinal 2D B-splines of order 3 to model the force law.
For convenience, the force law was broken into two splines: a repulsive
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Fig. 4. The simulation in Fig. 2 rerun with a force law to model a viscous material.
Fig. 5. Experimental and simulated stress–strain curves for Delrin.

portion with five control points acting from a distance of zero to one
lattice pitch, and an attractive portion with six control points acting
from one to three lattice pitches. To ensure stability, both functions
were constrained to a force of zero at a distance of one lattice pitch.
The repulsive force was further constrained to level off between the
first and second control points, and the attractive force was constrained
to vanish at three lattice pitches. The tangents at the joining point
were controlled by an angle parameter to ensure continuity. The net
result was thirteen free parameters. For computational efficiency, we
maintained nearest lattice neighbors for computation of the attractive
forces.

The model is then fit by minimizing the mean squared error be-
tween the experimental and simulated stress–strain curves. To solve this
optimization problem, we used the covariance matrix adaptation evolu-
tion strategy (CMA-ES) [25]. This gradient-free optimization algorithm
balances local and global search by iteratively refining a multivariate
Gaussian distribution that models the relationship between the inde-
pendent and dependent variables (in this case, the design parameters
and the value of the objective function). We used 16 samples per
generation and a relative convergence threshold of 0.01 in the objective
value, with the c-cmaes software package [26]. Fig. 6 depicts the
optimization progress for the simulated force law depicted in Fig. 5.

The simulation is in principle differentiable, so one could use a
gradient based method such as gradient descent. However, for the
4

low-dimensional design spaces we use, gradient based search is not nec-
essary. Furthermore, eschewing gradients decouples the optimization
problem from the simulation time. When computing gradients through
a simulation, the chain rule must be applied at each time step. After
thousands of steps, the gradients tend to vanish or grow without bound.
For this reason, optimization over differentiable simulations are usually
limited to the order of 1000 time steps [27]. In contrast, we commonly
optimize over tens or hundreds of thousands of time steps.

Being data driven, it is natural to compare our method to machine
learning based techniques. Our method involves orders of magnitude
fewer parameters than those involving neural networks, thus enabling
the use of much smaller training datasets. Physics Informed Neural
Networks (PINNs) [28] are a powerful deep learning framework for
solving ODEs and PDEs. They can also be trained with few training
data, but only if the governing equations of the system are known
directly so that residuals can be included in the objective function. In
contrast, our method requires very little training data and can be used
when very little is also known about the governing equations of the
system.

5. Hysteresis

In PDE based numeric simulations and more complex particle meth-
ods, memory kernels are commonly employed to maintain history
dependent state [29]. Sophisticated techniques have been developed to
derive these memory kernels, such as the Mori-Zwanzig formalism [30].
The underlying assumption in such methods is that the history de-
pendence should be accounted for within the governing equations of
the model. This stands in contrast to fundamental physics theories, in
which the forces acting on a system depend only on its current state.

We find that history dependence naturally emerges via the evolution
of the model state of MIPS models. Fig. 7 depicts a comparison of
experimental and simulated cyclic loading of an ASTM D638 coupon.
The force law used in the MIPS simulation was trained on a sin-
gle stress–strain curve (specifically, the experimental data depicted in
Fig. 5). When cyclically loaded, rather than extended linearly, the same
experimental setup produces a cyclic stress–strain curve. The resulting
hysteresis loop resembles that of the equivalent physical experiment
(Fig. 7). This is notable given that the data used to train the model in-
cluded no samples taken under cyclic loading. The history dependence
emerges as a result of particle rearrangement. The energy being added
to the system is dissipated by the damping term discussed in Section 4.
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Fig. 6. Left: Objective function value vs. CMA-ES generation. Right: Optimized force law.
Fig. 7. Experimental (left) and simulated (right) cyclic loading of Delrin. The simulated model exhibits hysteresis despite being trained only on non-cyclic data.
6. Anisotropy

For any particular crystal structure, relationships between the in-
teratomic potentials and the resulting elastic constants can be de-
rived [31]. The result is generally a loss of degrees of freedom in the
elastic constants, which imposes constraints on the stiffness tensor [32].
For the FCC lattices used in these studies, 𝑐44 = 𝑐12. This would appear
to indicate that MIPS cannot be used to model materials for which this
constraint does not hold.

The situation is different when bonds may be formed and break
dynamically. The molecular dynamics literature contains a wide va-
riety of bond order potentials, such as the Tersoff potential [33], the
Brenner potential [34], and the EDIP potential [35]. These potentials
still express the binding energy as a sum of pairwise interactions, but
each term incorporates a bond order parameter that is a function of
the neighborhood of the particle pair. In full generality the bond order
functions can include chiral or directional dependence, opening the
door to anisotropic interactions.

MIPS offers a simpler approach to anisotropy that bypasses the
constraints of rigid lattice structures but also eschews the additional
5

model and computational complexity introduced by bond order poten-
tials. This is accomplished by annotating each particle with a particle
type that controls the strength of its interactions. In the simplest case,
particles are divided into a strongly interacting group and a weakly
interacting group. All pairwise particle interactions use a force law of
the same shape, but the resulting force is scaled based on the particle
types of the two involved particles. As a result, the bulk material
properties depend on the distribution of positions of the annotated
particles. This allows anisotropy to be embedded in geometry, rather
than the governing equations.

This approach is inspired by mechanical and electronic metamateri-
als [23,36], which utilize geometry to achieve bulk behavior impossible
for a homogeneous block of any of their constituent materials. (For
example, Fig. 2 depicts a chiral metamaterial.) The principle also has
roots in materials science: Ti64, a titanium alloy common in aerospace
and medical applications, exhibits anisotropy as a result of the relative
proportion and spatial distribution of grains with two different crystal
structures.

Fig. 8 demonstrates a case study of an anisotropic tensile response.
We apply tensile stresses along two orthogonal axes to an axis-aligned
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Fig. 8. Left: anisotropic tensile response of MIPS particles on a FCC lattice with a uniform force law distribution. Right: reducing and increasing the anisotropy through variation
of the particle force law spatial distribution (illustrated in the inset).
Fig. 9. Crack propagation in the Sandia fracture challenge solved by COMSOL FEA (top) and MIPS (bottom) using the force law (right) compared with experiment (inset, from [37]).
cubic block of material 1 cm on each side. As a baseline, we use the
same pairwise potential for all particle interactions. The potential was
chosen to produce a stiffness of about 1 GPa. Some anisotropy is evident
due to the FCC lattice structure. To alter the anisotropic response, we
divide the particles into strongly and weakly interacting groups. To
increase the anisotropy, we distribute particles in the strongly inter-
acting group along fibers running parallel to the Y axis. Particles in the
strongly interacting group experience forces twenty times stronger than
the baseline, while particles in the weakly interacting group experience
forces a factor of one half weaker. To decrease the anisotropy, we orient
the fibers of strongly interacting particles parallel to the X axis, and
scale strongly interacting particle forces by a factor of 3.53, and weakly
interacting particle forces by a factor of 0.82.

This example illustrates the principle of tuning bulk material
anisotropy based on particle distributions; future work will investi-
gate searching over force law assignments to match arbitrary stiffness
tensors.

7. Failure

In this section we investigate how MIPS can model failure, compar-
ing both the mechanisms found and the modeling effort. The first test
case is fracture-induced failure of ductile materials, comparing the path
of crack propagation in the Sandia challenge [37] between experiment,
MIPS, and FEA simulations with Phase Field Modeling (PFM).

PFM solves an ordinary differential equation for tracking the sharp
interface of the crack, whose geometry is represented in a diffusive way
without sharp discontinuities by a scalar field that smoothly transits
the phase of the non-damaged material to the phase of the damaged
material. PFMs are favored for modeling the branching and merging
of multiple cracks over alternative modeling techniques where the
crack is treated as a physical discontinuity introducing external criteria
6

for fracture and additional algorithmic steps to track the fracture
shape [38].

Quasi-static crack propagation simulation of the Sandia challenge
was performed with COMSOL Multiphysics, shown at the top of Fig. 9.
The Sandia challenge scenario was set up in COMSOL assuming plane
stress condition and following the modeling steps described in the holed
plate application example [39], whose results are benchmarked against
previously published literature [40,41]. Loading is applied through
prescribed displacements to the boundaries of the two larger holes.
Steel AISI 4340, as provided by COMSOL’s materials library (Young’s
modulus 205 GPa, Poisson’s ratio 0.28, and critical energy release rate
2280 J/m2), was used in the simulations due to its high ductility.

A phase field approximation was made after the sharp crack geome-
try, and cracking was incorporated into the domain material. The set up
of the phase field damage model does not include a damage threshold,
meaning that all material points subjected to tension are damaged. The
material input to the damage model is the critical energy release rate,
which was chosen to be within the range of 1500–2500 J/m2, whereas
the tensile strength is determined by the damage evolution function
and the evolution of the phase field, which is dependent on the internal
length scale setting which controls the width of the localized phase field
and was set to 0.25 mm.

From a usability perspective, the FEA simulation workflow for
fracture-induced failure has many limitations. The most important
point is the need to tune the solver configuration to achieve conver-
gence. We used a linear elastic model with damage to account for
tensile cracking. The scalar phase field evolution is modified by the
internal length scale parameter that controls the width of the crack
interface. To properly resolve the crack without unstable material
behavior, significant time and effort is required of the user to define
an appropriate mesh that is locally refined according to the expected
crack trajectory, in combination with an efficient and stable solver
configuration.
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Fig. 10. MIPS simulation of the delamination of a double cantilever beam showing characteristic decreasing load with increasing delamination length (left), compared with
load–displacement curve critical paths found from families of virtual crack closure technique [44] (right top) and peridynamic [45] (right bottom) simulations.
Fig. 11. Resin (left), fiber (middle), and repulsive (right) force laws used for the composite DCB simulation.
Depending on the user expertise with FEA and PFM, the metric of
user time can range from days to months. The simulation step becomes
even more overwhelming with the multiple semi-empirical material
models for damage, whose number of parameters vary and need to be
determined during an intermediate calibration step before the actual
simulation task begins. This is evident by the many materials models
reported in the Sandia challenge [42,43].

Compared to this, the bottom of Fig. 9 shows the MIPS solution to
the same problem. The strain field is plotted, with red showing tension
and blue compression. This used 5 million 100 μm particles, and the
simulation required on the order of 15 min on a V100 GPU. The strain
distribution and crack path is similar to both experiment (from [37],
shown in the inset) and the COMSOL simulation. Unlike PFM there was
no need for MIPS to explicitly follow the crack; all that was specified
was the force law shown on the right and the boundary conditions that
displaced the clevis pins.

A second test case was modeling composite failure, which is ur-
gently needed for their wider adoption [46]; the challenge is the need
to span between their micro- and macro-structure [47,48]. The goal
here was to simulate the delamination of a double cantilever beam
(DCB). Fig. 10 shows a MIPS simulation using layers of stiff fiber and
softer resin particles and the boundary condition imposed by again
displacing clevis pins, with the force laws shown in Fig. 11.

This simulation shows the characteristic behavior of an initial
increase in the load, followed by a decrease as the delamination length
grows. Fig. 10 compares DCB load–displacement curves showing that
behavior found from families of virtual crack closure technique [44]
and peridynamic [45] simulations tracing the critical
load/displacement path. Again MIPS is able to do this without needing
to explicitly follow the delamination front or break bonds at the
7

interface.
8. Conclusion

We have shown how MIPS can trade computational effort for sim-
plicity, reproducing results from much more complex algorithms in
challenging material modeling areas including anisotropy, hysteresis,
and failure. It effectively equates the description of a model and its
computational solution; future work will develop this as a quantita-
tive starting point rather than just a numerical approximation. This
approach is directly applicable to other short-range interactions such as
rheology and hydrodynamics, and potentially to long-range interactions
such as electricity and magnetism through the exchange of virtual
particles.

Benefits of the MIPS simplification include significant reductions in
the user effort to set up a simulation, in the number of parameters
required to train a model, and in the size of the code and the effort re-
quired to accelerate a computation and to port it to new computational
architectures.

The latter point contains the most significant implication, the
prospect of a corresponding hardware simplification. Aspects of existing
high performance computing architectures are not just wasted on
MIPS, they are obstacles to its efficient implementation. Their memory
hierarchy and interconnect topology serve as bottlenecks to particle
propagation and interaction; what is needed is a much simpler 3D
lattice of locally connected particle processors [49]. This reduces the
requirement to introduce emerging device technologies for a range of
high-performance computing applications, with the potential to reduce
one of the most significant scaling limits, power consumption, by orders

of magnitude [50].
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