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Abstract: The Tachi-Miura polyhedron possesses a number of useful properties,
including bidirectional, rigid flat-foldability, tailorable Poisson ratio, and tileabil-
ity. This work shows how to efficiently produce shaped volumes with these prop-
erties by modifying constructions for shaped kirigami honeycombs to replace the
hexagonal cells with Tachi-Miura polyhedral cells. We analyze the rigid mechan-
ics of these Tachi-Miura honeycombs, and experimentally test the elastic behavior
subject to realistic materials and boundary conditions. Finally, we prototype, fab-
ricate, and test a running shoe sole using these techniques.

1 Introduction
In [Miura and Tachi 10] and [Tachi and Miura 12], several rigid-foldable origami
cylinders are proposed and analyzed. One example, the Tachi-Miura polyhedra, is a
rigid, bidirectionally flat-foldable cylinder which is tileable. Such foldable, space-
filling cylinders open the possibility of constructing cellular materials with rigid
folding mechanisms. The mechanical properties of cellular materials based on the
Tachi-Miura polyhedron have been analyzed in several studies, including [Yasuda
et al. 13], [Yasuda and Yang 15], and [Yasuda et al. 16]. As these materials are
rigidly flat-foldable, they can be used to create objects that undergo large reversible
strains, with Poisson ratios determined by the Miura angle used to create the un-
derlying polyhedra. This capability is a powerful tool for engineering compliant
structures.

Physically constructing such cellular materials by simply joining many cylin-
ders is difficult to implement at scale, but we can adapt strategies that were de-
veloped to efficiently construct origami honeycombs [Nojima and Saito 06] [Saito
et al. 11] [Saito et al. 14] [Wang et al. 17]. These works show how a single sheet
can be cut and folded to create a straight-walled honeycomb filling the space be-
tween two bounding surfaces. The current research extends these methods to fabri-
cate honeycombs with Tachi-Miura polyhedra instead of hexagonal prismatic cells.
These cellular materials are efficiently constructed by cutting and scoring a flat
sheet which rigidly folds into the cellular material. By specifying locations of
cuts, these cellular materials acquire a desired shape, just as with hexagonal hon-
eycombs. We call such structures Tachi-Miura honeycombs.
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Figure 1: A) Cutting and folding pattern for the straight-walled honeycomb (blue
dashed lines denote a valley fold, red dash-dot lines denote a mountain fold, and
black solid lines denote a cut), B) Cutting and folding pattern, for Tachi-Miura
honeycomb, made replacing straight folds with zig-zag folds, C) Shaped straight-
walled kirigami honeycomb, D) Shaped Tachi-Miura kirigami honeycomb.

In this work, we first describe our construction for these cellular materials and
characterize the rigid folding motions of the resulting cellular materials by calcu-
lating their Poisson ratios. To validate the application of these cellular materials
to engineer compliant materials, we measure the mechanical response of samples
under compressive loading. By varying the Miura angle of the underlying Tachi-
Miura polyhedron, we can tune response to match a range of common engineering
foams. We then design a prototype utilizing both the large compliance of the fold-
ing mechanism and the shape control offered by the honeycomb construction: a
running shoe sole. We laser cut, fold, and test this prototype.

1.1 Pattern generation

We begin by describing our method of constructing an origami pattern for a Tachi-
Miura honeycomb filling a given volume. The volume to be filled is defined as all
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points (x,y,z) ∈ R3 such that 0 < x < X , 0 < y < Y , and

u(x,y)< z < t(x,y). (1)

In other words, the volume is the space bounded by two functions u, t, restricted to
a rectangular region of the x−y plane. For instance, in Figure 1c, t and u are taken
as linear functions describing planes.

In [Saito et al. 14, Calisch and Gershenfeld 18], methods are derived for cal-
culating the shape and positions of the slits in Figure 1a in order to produce the
honeycomb shown in Figure 1c. These methods use evaluations of the functions t
and u in recursive equations to calculate these parameters. For brevity, we do not
reproduce these derivations here, but refer the reader to these articles for the details
of these calculations.

Our method for producing Tachi-Miura honeycombs is a direct adaptation of
the method described above, motivated by modifying the cutting and folding pat-
tern shown in Figure 1. First, we introduce some nomenclature. We distinguish
corrugation folds, the horizontally-running folds in Figure 1a, from strip folds, the
vertically-running folds joining adjacent cuts. Then, we conceptually subdivide the
pattern into strips, the regions of material bounded on left and right by cuts and
strip folds. For example, Figure 1a is composed of eight strips.

Within each strip, we replace each corrugation fold line with a zig-zag fold of
the same mountain/valley orientation. As shown in Figure 2, these zig-zag folds
make an angle of ±α with the vertical axis and has a period of 2d. Vertical moun-
tain and valley folds are added between each vertex of the zig-zag as shown to
create a Tachi-Miura quarter cylinder [Tachi and Miura 12]. We apply this modi-
fication to each strip, taking care to adjust the phase of the zig-zag fold pattern so
that adjacent strips align when the strip folds are actuated.

(a) (b) (c)

Figure 2: A) Parameterized Tachi-Miura unit cell folding pattern, B) Tachi-Miura
unit cell three dimensional geometry. C) The unit cell and its mirror image arranged
into a Tachi-Miura polyhedron.

This modification allows us to produce Tachi-Miura honeycombs from one
sheet, but to accurately determine the shape, we must analyze the rigid folding
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Figure 3: A) Plan view, defining x, y, and γ , B) Altitude view, defining z and β .

mechanism of the Tachi-Miura polyhedron. To do this, we use an angle parameter-
ization, introduced and proven in [Miura and Tachi 10], given by the equation:

tanα cosβ = tanγ (2)

where the Miura angle α sets the relationship between the exterior angle of each
cell (2γ) and the dihedral angle of the trapezoidal faces (2β ). These angles are
shown graphically in Figure 3a.

Using these angle definitions, we define variables x, y, z for the spatial extents
of a cell in each coordinate direction, shown in Figure 3b. We calculate:

x = 2ssin2γ y = s+ scos2γ z = Nd sinβ (3)

where N is the number of zig-zag half-periods in our strip. We see that the ex-
pressions for x and y are identical to those of a standard hexagonal honeycomb
cell, while the expression for z is simply scaled by a factor of sinβ . Therefore, to
accurately reproduce the shape of functions t and u, we must scale our generated
patterns in the horizontal direction by a factor of 1/sinβ .

We note that for functions t and u with large derivative, the intersection of the
folded image of the zig-zag fold with the top or bottom surface can differ from the
function’s value at the base point of the zig-zag fold. This is illustrated in Figure 4,
where the image of the zig-zag fold is shown in magenta. In this case, we can
correct the function values used in the recursive equations by calculating the actual
intersection of the zig-zag fold image with the bounding surfaces.

To do this, we define the linear segments of the magenta path by vectors v+
and v− (shown in Figure 4b). Using the angle parameterization of the Tachi-Miura
polyhedron and the parallelogram area interpretation of the cross product, we cal-
culate

v+ = d
[

cotα,cotα− cosβ

sin2γ
,sinβ

]ᵀ
(4)

v− = d
[
−cotα,−cotα +

cosβ

sin2γ
,sinβ

]ᵀ
(5)
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Figure 4: A) Bounding surfaces t and u shown in reference to the z = 0 plane.
B) Calculating the intersection of the zig-zag fold image curve with the bounding
surfaces using binary search.

Thus, to calculate the intersection point we start from a point known to lie between
t and u (shown in Figure 4 as the z = 0 plane). We alternatively add v+ and v− until
we leave the valid region. At this point, we have bracketed the intersection point by
the end points of one linear segment of the zig-zag fold image path. Hence, we can
simply perform a root search (e.g. binary search) to approximate the intersection
point as accurately as is desired. For example, in Figure 4, the intersection point is
computed to be approximately v++v−+v+− 1

2 v++ 1
4 v+ away from the starting

point.
Finally, we also note that for functions t and u with large curvature, self-

intersections of the flat folding pattern can occur as a result of the zig-zag phase
shift. In practice, these are small, and for the purposes of the present work, we
ignore them. With these corrections and caveats, our modification of the kirigami
honeycomb pattern produces Tachi-Miura honeycombs filling the same volume.

2 Results
2.1 Poisson Ratios
To analyze the mechanical behavior of these Tachi-Miura honeycombs, we first
calculate their Poisson ratios (i.e., negative the ratio of strains between coordinate
directions during the folding motion). We start from the expressions derived above
for the x, y, and z extents, calculating the Poisson ratios in terms of α and γ . Our
expressions are similar to those derived in [Yasuda and Yang 15] but with a pa-
rameterization (shown in Figure 3) of cell extents that generalizes to volumes of
adjacent cells (instead of applying to single cells).

To derive the poisson ratios of these structures, we must write expressions for
the strains εx = dx/x, εy = dy/y, and εz = dz/z. Towards this end, we take deriva-
tives of the spatial extents relative to γ:

dx
dγ

= 4scos2γ (6)
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(a) (b)

Figure 5: Poisson ratios of Tachi-Miura honeycomb. A) νxz = −εx/εz, B) νyz =
−εy/εz.

dy
dγ

=−2ssin2γ (7)

dz
dγ

=
dz
dβ

dβ

dγ
= Nd cosβ

dβ

dγ
= Nd

−1
tanβ tanα cos2 γ

(8)

where the final line follows from implicitly differentiating the governing equation.
Now we calculate the strains:

εx =
dx
x

=
dx
dγ

dγ

x
=

dγ(1− tan2 γ)

tanγ
(9)

εy =
dy
y

=
dy
dγ

dγ

y
=−2dγ tanγ (10)

εz =
dz
z
=

dz
dγ

dγ

z
=

−dγ tanγ

tan2 α cos2 γ− sin2
γ

(11)

These expressions can be used directly to calculate the Poisson ratios, as the
factor of dγ cancels:

νxz =−
εx

εz
(12)

νyz =−
εy

εz
(13)

These values are shown in Figure 5. We see that the Poisson ratio depends
on the choice of α , but it is independent of d and N. Further, for many choices
of α and over much of the folding range, νxz is approximately zero, while νyz is
very sensitive to α over this same range. Thus, by selecting α , we can control the
Poisson properties of the honeycomb.
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Figure 6: A) Foam sample on test platen, B) Folded sample on test platen, C) Foam
sample loaded by platens, D) Folded sample loaded by platens.

2.2 Elastic behavior testing
The behavior of Tachi-Miura honeycombs under realistic boundary conditions is
a combination of the rigid mechanism analyzed above and elastic deformations of
the underlying material. A nonzero Poisson ratio means that fixed or frictional
boundary conditions effectively resist the structure’s tendency to follow its rigid
mechanism under a compressive load in the z direction [Yasuda et al. 13]. The
larger the magnitude of the Poisson ratio, the more lateral movement is required by
the rigid mechanism, and hence, the more resistance is offered from the boundary
condition. As the average magnitude of the Poisson ratios νxz and νyz increases
with α , we expect the effective stiffness of Tachi-Miura honeycombs subject to
fixed or frictional boundary conditions to also increase with α .

To confirm this effect, we performed compression testing of Tachi-Miura hon-
eycombs comparing the results to those of commercially available engineering
foams. Using a constant base material and sheet thickness, we prepared samples
with varying Miura angles. We stitched these samples to retain the folded state of
the strip folds.

We applied a load of 100 N to the samples over their full area of 54 cm2, cycling
the load six times at a rate of 1 mm per minute. We tested commercial foam samples
of several materials having similar density to the pleated honeycomb samples with
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Figure 7: Loading curves of Tachi-Miura polyhedra compared with those of engi-
neering foams

the same test parameters. The results (graphed in Figure 7) show the the pleated
honeycombs span a range of average modulus from roughly 140 to 300 kPa, while
the commercial foams range from roughly 170 to 500 kPa.

This shows that by using a single material and simply changing the Miura angle,
we can produce a similar range of stiffness as is exhibited by a range of commercial
foams. The conventional foams use a variety of materials and process parameters
to achieve this range of stiffness. Thus, the reduction of material properties to ge-
ometry has the potential to simplify the manufacturing supply chains for products
using foam-like materials. Further, foams are commonly made in a heat-induced
expansion process, giving no ability to spatially vary material properties. Tachi-
Miura honeycombs can be constructed where Miura angle varies from cell to cell,
effectively giving the ability to spatially map stiffness. While polyhedra with dif-
fering Miura angle are not strictly tileable, similar methods as outlined above can
work in practice to produce such honeycombs with only minor gaps between adja-
cent cells. Quantifying the precise limits to this approach is an active area of future
research.

2.3 Shoe sole prototype
Given that Tachi-Miura honeycombs can exhibit similar compliance as commercial
foams while filling a prescribed shape, we now use our construction to prototype
a running shoe sole. The thermal processes involved in creating a conventional
sole are responsible for nearly half of the energy required to manufacture an ath-
letic shoe [Cheah et al. 13], and so creating a sole using only cutting and folding
processes is an attractive strategy for embodied energy reduction. Further, athletic
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soles are conventionally produced in a machined mold, requiring a large number of
identical soles to be produced for economic feasibility. Specifying the sole geom-
etry using the fold pattern instead of a mold has the potential to enable customized
shoes without this overhead.

Figure 8 shows the steps of producing this folded running shoe sole. First,
the geometry is digitally designed. In this case, the sole has a thickness of 20mm
throughout the heel and tapers to 10mm through the forefoot. The footprint of cells
which are populated with Tachi-Miura polyhedra are selected to fit inside the shape
of common mens size 10 sole outline. The angle α is 50◦, while the lengths d and
s are 2.8mm and 8.8mm, respectively. The top three images at left of Figure 8 show
the three-dimensional design and the corresponding folding and cutting pattern.

Figure 8: A) Plan view of digitally designed geometry for shoe sole, B) Altitude
view, C) Cut and fold pattern for shoe sole, D) Laser cut polypropylene prototype,
E) After initial folding, F) Testing the shoe sole at running speed.

This pattern is sent to a laser-cutter, where the outline and slits are through-cut
and the creases are half-cut. The material used is 0.25mm polypropylene, which
produces robust creases with this laser processing technique. This sheet is then
folded with the aid of 3D printed creasing dies of progressively larger fold angles
γ . The flat and folded states are shown in the bottom two images at the left of
Figure 8, and the folding motion is shown in this video. Finally, cotton thread is
passed through laser cut holes and pulled tight in order to keep the strip folds held
closed. The finished shoe is shown in Figure 8 at right during a running test.

When loaded by a footstep, the folded shoe sole compresses to levels similar to
that of a conventional foam shoe, absorbing the impact of the foot strike. At this
point, the forces arising from the Poisson effects and boundary conditions balances
the force from the foot, and the Tachi-Miura honeycomb is limited from continuing
its flat-folding mechanism. The deformation occurs chiefly at regions of highest
force (for example, under the heel and metatarsal heads), effectively conforming to
the underfoot shape. With a thin neoprene sock liner, the result was comfortable
for a range of test athletes. This video shows high speed video of the shoe sole in

http://vulpes.cba.mit.edu/rnd/kiri/doc/img/tmp-running-shoe/shoe-folding-small.mp4
http://vulpes.cba.mit.edu/rnd/kiri/doc/img/tmp-running-shoe/tmp-run-1000fps-small.mp4
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use at running speeds.

3 Conclusions
We have shown how existing techniques for producing shaped hexagonal-celled
honeycombs can be adapted to produce shaped honeycombs with Tachi-Miura
polyhedra as cells. The bi-directional flat folding mechanism of the Tachi-Miura
polyhedron endows the resulting honeycombs with the same flat foldings. In phys-
ical prototypes, finite-thickness materials and boundary conditions turn this flat
folding into an elastic mechanism, a powerful tool for building robust structures
with compliance.

Motivated by this, we investigated the mechanical properties of Tachi-Miura
honeycombs, first calculating the rigid Poisson ratios. Next, we compared the me-
chanical behavior of the structures to common engineering foams, showing it is
possible to create a similar range of compliance by changing the angle α . Finally,
we use these findings to design a prototype making use of both the compliance and
the shape control: a running shoe sole.

In this work, we used 3D-printed creasing dies as a tool to fold the samples
quickly. This was effective but required considerable manual labor. For future
work, we will increase production rates by either automating the use of similar
incremental forming dies, or using “pattern and gather” approaches [Schenk 12].
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