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Abstract
A novel origami cellular material based on a deployable cellular origami structure is described.
The structure is bi-directionally flat-foldable in two orthogonal (x and y) directions and is
relatively stiff in the third orthogonal (z) direction. While such mechanical orthotropicity is well
known in cellular materials with extruded two dimensional geometry, the interleaved tube
geometry presented here consists of two orthogonal axes of interleaved tubes with high
interfacial surface area and relative volume that changes with fold-state. In addition, the
foldability still allows for fabrication by a flat lamination process, similar to methods used for
conventional expanded two dimensional cellular materials. This article presents the geometric
characteristics of the structure together with corresponding kinematic and mechanical modeling,
explaining the orthotropic elastic behavior of the structure with classical dimensional scaling
analysis.
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1. Introduction

Origami, the art of folding a piece of paper into a three-
dimensional (3D) form and/or folding it into a flat state, has
received much attention in science and engineering, receiving
credit for many innovative designs and applications. Two
major approaches for applied origami in mechanical engi-
neering are (a) to obtain stiff and lightweight structures that
are manufactured by folding flat sheets, such as folded plate
shell structures [1], sandwich panels with origami cores [2, 3],
and cellular meta-materials [4], and (b) to obtain flexible
deployable mechanisms such as microscale devices [5],
mesoscale structures such as folded stents [6] and macroscale
structures such as deployable solar panels in space [7]. Prior
work has demonstrated the ability to fill space to produce any
3D shape with strings composed of very simple folding
mechanisms [8], but much of the work on the extensible
structural properties achieved through folding has addressed
two dimensional foldings such as tesselations. Schenk and
Guest [9] study changes in the material properties by folding
egg-box and Miura-ori tessellation patterns to suggest the

ability to engineer such properties based on folding patterns.
Foldable cellular materials have also been proposed [4], based
on the symmetry of Miura-ori, to produce rigid origami
deployment mechanisms that are flat-foldable; since the
structure deploys to a mechanically singular configuration
with flat hinges, the deployed structure is not expected to
transform in all of the x, y, and z directions, once deployed.
Since the stiffness of the former folded-sheet types of origami
structures is obtained when the boundary is closed to form
cylinders or when each part is assembled and adhered to other
sheets, the straightforward expectation is that stiffness and
flexibility are mutually exclusive properties of origami.

However, recent studies on rigid origami, i.e., plate-and-
hinge mechanisms, allow us to design deployable and yet stiff
structures through the use of geometrically compatible rigid
thick materials [10] or foldable cylindrical and composite
structures [11, 12]. The proposition of the cellular structure
with a rigid-folding mechanism [12] is based on the assembly
of rigidly foldable origami tubes that tesselate to fill space by
periodic and affine transformations. Since such a cellular
structure with plates tend to produce an overconstrained or
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statically indefinite system, the generic result is a rigid static
structure. However, because of the symmetry of the assembly,
the overall structure becomes a one degree-of-freedom (DOF)
mechanism with desirable robustness and stiffness in its fully
deployed state.

In this paper, we propose an anisotropic meta-material
based on cellular rigid origami [12]. The material is flexible
and stiff at the same time, along orthogonal axes which we
name for reference: flexible in the x and y directions and stiff
against compression in the z-direction (figure 1). The inter-
leaved cellular structures are constructed from material with
non-negligible thickness, and can be considered to be com-
posed of facets, much like traditional closed-cell materials.
While they are strictly not closed-cell structures, because the
cells are connected into rows of tubes, rigid configurations of
closed faces can contribute significant stiffness through their
elemental bending and shearing stiffness. We establish the
constitutive volume relationships between the two axes of
tubes, and predict the elastic behavior of interleaved tube
cellular materials through classical dimensional scaling ana-
lysis; specifically, we focus on the materialʼs elastic modulus
scaling with relative density. Further, a fabrication technique
based on the rigid-foldable deployment mechanism of the
structure is proposed, whereby distinct repeating patterns of
thin sheets are laminated in a flat state, then deployed to
obtain the target 3D volumetric structure.

2. Geometry

2.1. The unit cell

The overall geometry and motion of the interleaved tube
cellular structure can be represented by its fundamental
rhombic dodecahedron unit cell, which is composed of

rhombi with sector angles of θ = ≈ °2 arctan 70.530
1

2
. We

call this module a flip–flop module, since this is an anisotropic
scaled version of the kinematic origami known as the ‘flip–-
flop,’ with sector angles of °60 , by origami artist Thoki Yenn
[13]. A flip–flop module is comprised of two tubular com-
partments and exhibits continuous flat foldability in the x and
y directions. Interestingly, height in the z-direction is mini-
mized when it is symmetric in x and y directions, which is
also when the volume is maximized (figure 2). This module
can tessellate a 3D space even in folded or partially folded
states, because the shearing open rhombic faces are always
planar and also parallel to xz and yz planes. Specifically, the
configuration can be parameterized by the angles θx and θy of

these open rhombic faces (parallel to xz and yz planes,
respectively). These parameters are constrained because the
surrounding rhombic faces are filled and maintain rigidity.
Normalized direction vectors of the incident edges of a
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Figure 1. Interleaved tube cellular structure manufactured by 3D printing, showing foldability in XY direction (top) and rigidity in z direction
(bottom). Each of the bottom images shows two copies of the same structure, with the right-hand sample oriented so that the z axis is parallel
to the basal plane, and the left-hand sample oriented so that the z axis is perpendicular to the basal plane. Initial conditions are shown in the
left-hand set of images, and identical loading conditions are shown in the right-hand set of images, displaying the difference in response for
the different orientations.
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Rigid foldability of these interleaved tube structures
combined with this volume relationship theoretically allows
for control of fold-state by differential pressurization of the
tube volumes, or vice versa. By differentially pressurizing
each set of tubes, extension along each of the axes can be
prescribed (figure 3) and by varying the total pressurization
the overall stiffness can be tuned. To derive the general
governing equations we consider pressurizing each of the two
sets of cylinders independently and consider the force exerted
by the structure in the x direction. For each fundamental
flip–flop module, conservation of energy gives:

θ θ θ
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where Px (resp. Py) is the pressure in the cells of the flip–flop

module in the x (resp. y) direction relative to external pres-
sure, and Vx (resp. Vy) is the volume of the cells of the module

in the x (resp. y) direction. Fx is the force exerted by the entire

module in the x direction. Given that = θx 2 cos
2
x ,

= −θ
θ∂

∂ sinx

2x

x . To calculate the volume of one side of the

flip–flop module, we use the triple product to compute the
volume of a parallelepiped. Defining ′ly to be the image of ly
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Figure 2. The folding motion of flip–flop. The module flat-folds into x and y directions, while the height z is minimized when the volume is
maximized.



reflected through the xy-plane, we have:
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If we wish to prescribe a static unloaded configuration,
we have =F 0x . Therefore, to extend to the configuration
given to a particular value of θx, we have the following

relation between the pressures:
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This gives a relationship between the two pressures (note
that to achieve the regular dodecahedron configuration where
θ θ θ= =x y 0, we have the intuitive result: =P Px y), but if we

want to derive actual values relative to the external pressure,
we must specify the desired stiffness of the actuator. This
stiffness is given by the derivative:
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Equations (9) and (10) dictate the relationship between the
pressures, fold-state or configuration, and pressure induced
stiffness.

3. Mechanical model

In the deployed interleaved tube rhombic dodecahedral
structure, the fundamental repeating unit cell may be con-
sidered to be the unit rhombic prism with opposing open faces
and all faces conforming to the rhombus geometry of the
canonical rhombic dodecahedron, which is space-filling by
affine transformation. An alternative repeating unit cell for the

Smart Mater. Struct. 23 (2014) 094012 K C Cheung et al

4

Figure 3. Cellular structure actuated by differentially pressurizing two sets of tubes in x and y directions (colored red and green respectively).
Left state maximizes −V Vx y. Middle state maximizes +V Vx y. Right state maximizes −V Vy x.



same structure is the rhombic dodecahedron with four open
faces and an internal web composed of four rhombic faces,
which is space-filling by linear translation. Figure 4 shows
another valid repeating unit cell with twice the volume of a
single flip-flop, bounded by a rectangular prism with faces
parallel to the X, Y, and Z planes of the cellular structure. The
enclosed rhombic dodecahedron has four open faces and an
internal web composed of four rhombic faces, with four
additional rhombic faces allowing for space-filling by linear
translation on the three orthogonal axes. Considering this
webbed rhombic dodecahedron as a composition of two
cylinders, the additional rhombic faces that fill out the
restangular prism connect the exterior faceted sides of one
cylinder to that of its neighboring dodecahedral cell (along the
one axis that is orthogonal to both cylinder axes), so as to
connect these edges orthogonal to the incident cylinder axis.
For simplicity and clarity, we consider this version of this unit
cell for the following dimensional scaling analyses. The
results of the following analysis are insensitive to the chosen
repeating unit cell, provided that the chosen geometry satisfies
the requirement of completely tiling space to form the con-
tinuous interleaved tube geometry.

The continuous interleaved tube geometry consists of
nodes with edge connectivity ze of four and eight in equal
proportion (the average edge connectivity z̄e is 6), and edges
with face connectivity zf of two and four with a number of

two connected edges that is twice the number of four con-

nected edges (the average face connectivity z̄f is ≈ 2.78

3
).

Assuming high elemental slenderness (thickness ≪ length in
both cell edge and face), as is common in the literature, the
density scaling relationship in classical form [14] can be
simply derived from the geometry as

ρ
ρ

≈
ℓ

⎜ ⎟⎛
⎝

⎞
⎠

t
6 ,

s

where ρ is the mass density of the structure, ρ
s
is the mass

density of the constituent solid material, t is cell edge or face

thickness, ℓ is cell edge length, and ≈6 2.4 is a geometric
constant determined by the deployed interleaved tube rhom-
bic dodecahedral geometry.

Here, we may consider the geometry as if it were created
by removing the tubular volumes from a bulk solid (figure 4
(middle and right)). The resulting solid is not strictly rigid-
foldable [10], though elastic deformation at the connecting
edges allows the structure to deform in a manner that
resembles rigid foldability.

If we denote the length of the edge as ℓ, the height vector
of the section rhombus is given by θ= ℓd e2 sin 2 z0 . The
scaling factor of each rhombus section of the tube hole is

= − ρ
ρs 1
s
, since each tube hole is obtained by translating

the deformed rhombus section along the original zigzagged
curve. Then, the relation between face thickness and relative
density ρ

ρs
, mentioned above, follows as the dot product of the

thickness along the height vector and the normal vector n of a
top facet.
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2
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Conventional foams display a lower degree of edge
connectivity and higher degree of face connectivity than this
deployed interleaved tube rhombic dodecahedral structure.
We know from the literature that high edge connectivity is
commonly associated with cell edge behavior that is domi-
nated by material stretching instead of transverse beam
bending, and associated improvements in specific stiffness
scaling, over conventional foams [14, 15]. The decreased face
connectivity is expected from the geometry, and may be seen
as an indication of some reduced contribution from cell face/
membrane stiffness, as well as absent contribution from
compression of enclosed cell fluid, due to the presence of a
fluid path between cells, in this geometry. The small constant
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Figure 4.A unit cell of the interleaved tube cellular structure. Left: the white nodes have four incident edges while the black nodes have eight
incident edges. The thick lines indicate edges with four incident facets while thin lines indicate edges with two incident facets. Middle:
tubular deletions from the theoretical solid, to obtain the structure. Right: thickened cellular structure.



geometric factor by which relative density scales (with
component slenderness t

l
) is similar to conventional foams,

and we may consider the interleaved tube rhombic dodeca-
hedral structure to be reasonably space efficient.

The classical closed cell foam specific modulus scaling
relationship is known as

ϕ ρ
ρ

ν ϕ ρ
ρ

≈ + −

−
+ −
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1 2
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s s s s

2
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s

where E is the modulus of the foam, Es is the modulus of the
constituent solid material, ϕ is the fraction of solid material in
the cell faces (versus edges), and ν is the Poissonʼs ratio of the
foam [14]. The three discrete governing phenomena that

contribute to this relationship are cell edge bending ϕ ρ
ρ( )2

2

s

[14], compression of enclosed cell fluid ν−

− ρ
ρ

⎛
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[16], and

membrane stretching ϕ− ρ
ρ( )1
s
[17]. The cell edge deflection

term omits material stretch, since transverse bending-based
deflection will always dominate stretch-based deflection
under the same load. If there is enough constraint to limit
edge behavior to material stretch, then this term is instead

proportional, as ϕ ρ
ρ( )2

s
[14].

For the case of the interleaved tube cellular structure, as
previously mentioned, the cellular chambers are not indivi-
dually enclosed; however, since the possibility of pressur-
ization and the differential pressure relationship to fold-state
may be important for future applications, we include the cell
fluid compression term above. We leave future work on
pressure dependency to future studies, and focus the
remainder of this work on implementations of the material
that are not pressure dependent.

Without the cell fluid compression term, considering the
open interleaved tube cellular structure alone, we expect the
specific modulus scaling relationship to be

ϕ ρ
ρ
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if edge deflection behavior is dominated by microstructural
beam bending behavior or
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if edge deflection behavior is dominated by material stretch.
Regardless of this edge behavior, a minority of the volume
fraction of constituent material is in the edges ϕ ≪( )1 , for

the folded interleaved tube cellular structure, so we may
expect membrane stretch behavior to yield good specific
modulus performance, as

ρ
ρ

∝E

E
.

s s

4. Results

To test the above application of classical cellular solids
dimensional scaling analysis to the specific modulus scaling
of the interleaved tube cellular structure, we performed finite-
element simulations (ELMER software [18]) with finely
meshed rigid body models (figure 5). To simplify the
implementation of periodic boundary conditions, we chose
the repeating unit cell that we introduced in the analytical
model above and shown in figure 4.

The simulations predict the materialʼs elastic modulus in
accordance with the analytical model. Fitting power law

curves to the data yields ρ∝E 1.5 in the z axis for a unit cell

model with periodic boundary conditions ( ρ∝E 2.2 in the z
axis for a unit cell model without periodic boundary condi-
tions), and ρ∝E 2.4 in the x and y axes. Performance in these
regimes are traditionally explained as expected reductions
from analytically idealized scaling laws [15, 19]—in this
case, ρ∝E in the z axis and ρ∝E 2 in the x and y axes. This
explanation will be addressed further in the discussion
section, below.

To evaluate the simulations we performed a brief study
of manufactured samples of structures (by stereolithographic
3D printing [20]) and tested their behavior using standard
load testing equipment [21] and procedures. The solid con-
stituent material is UV photocured acrylic, fabricated via a
stereolithography process that employed a support material
with low melting temperature (wax). While the ability to
access all surfaces to clear support material was important for
this particular process, it is notable that the interleaved tube
cellular structure geometry has limited overhang angles for a
number of orientations, and we have found that it can there-
fore be constructed using a variety of commercial layering
processes without support material (such as filament fusion/
deposition based processes).

The test specimens were cubic blocks with a 75 milli-
meter dimension per side, with unit cells approximately 12.5
millimeters in dimension (across the long axis of a rhombic
face), and fixtured to face plates on the top and bottom loaded
surfaces with high shear strength epoxy (figure 6). It is
accepted in the literature that edge effects for cellular mate-
rials are minimal beyond characteristic dimensions exceeding
several unit cells [22]. We tested four sets of specimens, with
mass densities varied by changing the thickness of the cell

faces and edges, ranging between ≈ −0.07 g cm 3 and

≈ −0.18 g cm 3, and corresponding to solid volume fractions of
six, eight, twelve, and sixteen percent.

All specimens responded as elastic solids, as expected.
Modulus data were calculated from the linear elastic regime,
and it was found that the specific modulus scaling fell
between canonical stretch and transverse beam bending
models ( ρ∝E and ρ∝E 2, respectively), with a best fit

power law curve of ρ∝E 1.7 in the Z direction, and ρ∝E 2.8 in
the XY direction. These regimes are traditionally explained as
a moderate reduction in performance from idealized ρ∝E

and ρ∝E 2 scaling, respectively, resulting from
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manufacturing defects [15] or stochastic variations in geo-
metry that are poorly accounted for by simple periodic models
[19]. To explain this difference between the idealized model
and experimental results for this particular case, we consider
likely contributing phenomena to include microstructural
defects and edge effects produced by the stereolithography
process (diffusion and mixing between modeling and support
polymers), in addition to an adjustment to the idealized
model–an alternate stretch–bend coupled model that is pre-
sented in the discussion, below.

5. Fabrication by lamination

The interleaved tube cellular structure folds to a flat state with
multiple overlapping layers, and may be manufactured by
sequential lamination of two dimensional patterns with
appropriate edge bonding. Reversing the process of flat-
folding enables us to then produce the three dimensional
cellular structure based on the one-DOF deployment
mechanism from the laminated flat state. The approach is
similar to the fabrication of a conventional 2.5D honeycomb
structure. Since adjacent layers are connected at the edges for
the ideal geometric model, we first modify the geometry to

have a finite width at the gluing paths, without losing its
fundamental mechanism. Figure 7 shows the folding motion
of a modified structure that has finite double covered area.
Here, each zig-zagged tube structure in one direction is
chamfered to produce a thin quadrangle gluing facet that
replaces the gluing path. Then, the flat state is produced by
laminating four distinct repeating layer patterns shown in
figure 8. The patterns shown are comprised of cutting and
folding lines and gluing (or sewing) paths to the next layer,
and the process can be performed by manual or automated
roll-to-roll presses, or CNC controlled cutting and gluing
machines. Another efficient implementation of this structure
is to use stereo-lithography or 3D printing technology to print
the structure in a nearly flat state, noting again that it is trivial
to orient the structure so that overhang angles are minimized,
allowing for unsupported 3D manufacturing processes,
as well.

6. Discussion

The typical 3D closed-cell foam structure has pseudo iso-
tropic elastic modulus governed by transverse cell edge
bending, resulting in nearly quadratic scaling with respect to
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Figure 5. Interleaved tube simulated specific modulus scaling for XY direction (indicated by open square ⋄) and Z direction (indicated by
solid dot •). Exaggerated deformations shown, to illustrate deformation mode.

Figure 6. 3D printed acrylic interleaved tube cellular material specific modulus scaling for XY direction (indicated by open square ⋄) and Z
direction (indicated by solid dot •), experimental.



its relative density [14]. It is well known that the mechanical
properties of such a cellular structure can be improved up to
proportional relative elastic modulus, based on the degree of
geometric constraint [14]—many such examples of engi-
neered cellular solids exist. From the standpoint of mechan-
ical performance, the interleaved tube cellular materials
presented here are shown to approach the mechanical per-
formance of the best known engineered orthotropic cellular
materials. Some 2.5D honeycombs, such as typical hexagonal
honeycomb core materials, display similarly orthotropic
behavior with nearly proportional elastic modulus scaling
with density on one axis and significantly reduced modulus
scaling in the orthogonal plane [14].

The results here present the materialʼs elastic modulus of
order ≈ −1 1.5 with respect to its relative density in its stiff
orientation (z axis) and elastic modulus of order ≈2 in the
flexible orientations (x and y axes).

Prior work has suggested that a bulk behavior model may
be derived from a combination of micro-structural component
stretch and moment induced component bending, resulting in
observed behavior that is dominated by the latter, larger

phenomenon [23]. Stretch–bend coupled models have also
been applied to biomaterials with mechanical performance
that exceeds the predictions of traditional models, based on
micro-structural topology [24].

A dimensional scaling argument that is parallel to the
classical stretch and transverse component bending models
[14], with a bending moment induced component deflection

yields a characteristic modulus scaling of ρ∝E 1.5. Consider a
microstructural element model with a length ℓ and thickness
t, made from a constituent solid material with modulus Es, and
a bulk cellular material loading condition that results in a
specific load P on the component. For a cellular geometry
with a high degree of connectivity, we consider component

deflection as resulting from both stretch (δ ∝ ℓP

E tstretch
s

2 [25]) and

moment induced bending (δ ∝ ℓM

E Imoment s

2

[25]), with the

moment arm being proportional to the element thickness, as
opposed to its length as with transverse component bending
based deflection. We expect then that the linear response is
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Figure 7. Cellular structure with gluing tabs. The modification maintains the rigid-foldability of the cellular structure.

Figure 8. Four cutting-folding-gluing patterns that repeatedly appear from the bottom to top in the order: (a)→(b)→(c)→(d)→(a) ···. Note that
the glue is placed on top of the sheet, so that the next layer is welded on the previous layer



dominated by the deflection due to the bending moment

δ δ δ= + ∝
ℓ

∝
ℓ( ) ( )Pt

E I

P

E t
,

s s
stretch moment

2 2

3

since ∝I t4 [25], and given the conventional assumption that
relative modulus is proportional to load and inversely pro-

portional to deflection, length, and Es, i.e., ∝ δ
E

E

P

lEs s
[14], we

expect relative modulus to be proportional to the cube of the

component aspect ratio, i.e., ∝
ℓ

E

E

t

s

3

3 . Taking the relative

density of lattice structures to be proportional to the square of

the component aspect ratio, i.e., ∝ρ
ρ ℓ

t

s

2

2 [14], we find that the

expected relative modulus of a cellular material with this
mechanism will scale with the relative density by an exponent

of 3

2
, i.e., ∝ ρ

ρ( )E

E

1.5

s s
[23].

Whether or not we accept a stretch dominated or
stretch–bend coupled model for the specific modulus scaling
with density, these interleaved tube cellular solids will likely
not be competitive against standard 2.5D honeycomb mate-
rials, for identical applications. However, the ability to con-
veniently access the interleaved enclosed tubular volumes for
flow or pressurization may provide interesting application
opportunities.

Since the cylindrical chambers can be accessed from the
exterior boundary of the structure, active pressurization can
be made to dominate the stiffness behavior of the bulk sys-
tem, and to exceed what is possible through solid material that
has not been pre-stressed. Differential pressurization between
the two cylinder axes can also be used to drive actuation near
the fully deployed state, and differential pressurization
between both cylinder axes and the external environment can
be used to drive overall deployment actuation. The ability to
separate the cell fluid pressurization process from the struc-
ture manufacturing process enables this functionality, as well
as the ability to make the cell fluid compression term dom-
inate the mechanical behavior of the bulk system.

Interleaved tube cellular structures may also act as a
pump to drive the two channels of fluid. For instance, by
actuating one of the spatial directions, fluid could be drawn
into the structure from both the x and y directions. Besides
simply pumping fluids, this could be an effective way to build
a heat exchanger due to the large shared surface area between
the sets of cylinders. The performance of a heat exchanger is
usually measured by its capacity for thermal transmission
relative to pressure required to achieve a desired flow rate.
There is a precedent for the application of cellular materials to
build heat exchangers [26–28] but most of these are single
fluid designs. The interleaved tube cellular structure affords
complete employment of the constituent membrane material
as interfacial surface between the two flow axes. Further,
movements of a cellular material have not been previously
considered as a mechanisms for optimizing flow conditions.

In addition, a practical layer-by-layer fabrication method
of the structure is proposed. The principle is to construct the
structure in a flat-folded state with multiple layers by

laminating sheets with specified shapes and gluing patterns.
Then, the sheets are stretched or inflated to produce a folding
motion to deploy the 3D structure. This is potentially
applicable to roll-to-roll processes, stereo-lithography and 3D
printing, or sheet lamination with CNC profiling machines
(cutting and gluing), so that we can apply the structure at
different scales, from microelectromechanical systems to
deployable structures for architecture and aerospace.
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