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TABLE II
OUR ATTACK COMPARED TO A GENERIC TIME/MEMORY/DATA

TRADEOFF ATTACK

From the table it is clear that using the same time complexity and
amount of keystream the generic time/memory/data tradeoff attack re-
quires an infeasible amount of memory and precomputation. A typ-
ical point on the curve, mentioned in [9], is P = T = 2

0:66L and
M = D = 2

0:33L. This point will give more realistic values, and
comparing it to our attack we see that it uses both more data and more
computation than a typical point on our curve.

VII. CONCLUSION

Since the introduction of the self-shrinking generator in 1994 sev-
eral attacks have been proposed, some requiring only a small known
keystream while others need longer sequence to succeed. In this corre-
spondence, we presented two new attacks on the self-shrinking gener-
ator, one using a short keystream and one requiring a longer keystream.
In the first attack, operating on a very short known keystream, we
showed that the complexity is approximately the same as the best pre-
viously known attack (the BDD-based attack). However, our attack
needs almost no memory whereas the BDD-based attack is unpractical
due to the large memory required. In the second attack we assumed a
longer known keystream. It was shown that the asymptotic computa-
tional complexity for this attack is significantly lower than in the pre-
viously best attack, for any amount of known keystream of length 2�L

when 0 < � < 0:5.
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Abstract—It has been observed that a linear-feedback shift-register
(LFSR) sequence can be synchronized by feeding the modulated sequence
into a “soft” (or “analog”) version of the LFSR. In this correspondence,
the “soft LFSR” is derived as forward-only message passing in the corre-
sponding factor graph. A continous-time analog (suitable for realization
as a clockless electronic circuit) is then given of both the LFSR and the soft
LFSR. A connection is thus established between statistical state estimation
and the phenomenon of entrainment of dynamical systems, which opens
the prospect of deriving dynamical systems (such as electronic circuits)
with strong entrainment capabilities from more powerful message passing
algorithms.

Index Terms—Circuits, dynamical systems, entrainment, factor graphs,
linear-feedback shift registers, message passing, nonlinear filtering,
synchronization.

I. INTRODUCTION

Pseudorandom signals play an important role in spread-spectrum
communications [1], [2] and in various measurement systems. In such
systems, the synchronization of pseudorandom signals is a problem of
significant interest. The standard solution to this problem is based on
correlating the incoming signal with (a segment of) the pseudorandom
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signal, which leads to a long acquisition time if the period of the signal
is large.

Perhaps the most popular class of pseudorandom signals are gen-
erated by linear-feedback shift registers (LFSRs). Both Gershenfeld
and Grinstein [3] and Yang and Hanzo [4], [5] observed that LFSR se-
quences can be synchronized by means of a “soft” or “analog” LFSR.
The approach of [3] is system theoretic: the soft LFSR is a dynamical
system with entrainment capabilities (cf. [6], [7], [8]) obtained by em-
bedding the discrete state space of the LFSR into a continuous state
space. By constrast, the (better) soft LFSR of [4], [5], which was inde-
pendently obtained also in [9], is derived from statistical estimation; it
achieves quick synchronization—e.g., after 150 samples at 0 dB for an
LFSR with a period of 215 � 1 samples—at very low computational
cost. Related algorithms, some of them more complex and more pow-
erful, were presented in [9]–[13].

In this correspondence, we connect the dynamical systems view of
[3] with the statistical view of [4], [5], both in discrete time and in con-
tinuous time. First, we derive the soft LFSR of [4], [5] as forward-only
message passing in the corresponding factor graph. We then propose a
new continuous-time analog of both the LFSR and the soft LFSR, both
suitable for realization as electronic circuits. We actually implemented
one such circuit, and we report some measurements. It is thus demon-
strated that continuous-time dynamical systems (such as clockless elec-
tronic circuits) with good entrainment properties can be derived from
message passing algorithms for statistical state estimation. Such sys-
tems/circuits may have substantial advantages in terms of speed and/or
power consumption over digital implementations in some applications,
and they may enable entirely new applications. However, such appli-
cations are outside the scope of this correspondence.

This correspondence is structured as follows. We begin by stating
the discrete-time problem in Section II. In Section III, we review
maximum-likelihood estimation and its interpretation as forward-only
message passing in a cycle-free factor graph. In Section IV, we obtain
the soft LFSR as forward-only message passing through another factor
graph, and we present some simulation results. A continuous-time
analog of the (discrete-time) LFSR is proposed in Section V. The cor-
responding continuous-time analog of the soft LFSR and its realization
as an electronic circuit are described in Section VI. Some measure-
ments of this circuit are reported in Section VII, and some conclusions
are offered in Section VIII. Some details of alternative versions of the
soft LFSR (sum-product, max-product, and Gershenfeld-Grinstein)
are given in the Appendix.

II. NOISY LFSR SEQUENCES

For fixed integers ` and m satisfying 1 � ` < m, let

X X
�m+1; . . . ; X�1;X0; X1; X2; . . . (1)

be a binary sequence satisfying the recursion

Xk = Xk�` �Xk�m (2)

for k = 1; 2; 3; . . ., where “�” denotes addition modulo 2. Any
such sequence will be called a LFSR (linear-feedback shift register)
sequence. For k � 0, the m-tuple [X]k (Xk�m+1; . . . ; Xk�1;Xk)
will be called the state of X at time k. The sequence X1; X2; . . .
is observed via a memoryless channel with transition probabilities
p(ykj xk). The situation is illustrated in Fig. 1 for ` = 1 and m = 3;
the boxes labeled “D” are unit-delay cells.

Fig. 1. LFSR sequence observed via a noisy channel.

Note that the restriction to two right-hand terms (“taps”) in (2) is
made only to keep the notation as simple as possible; all results of this
correspondence are easily generalized to more taps. We also remark
that, in most applications (and in our examples), LFSR sequences with
the maximal period of 2m � 1 are preferred, but this condition plays
no essential role in this correspondence.

From the received sequence Y1; Y2; . . . ; Yn, we wish to estimate the
state [X]n of the transmitted sequence. The computation of the max-
imum-likelihood (ML) estimate is straightforward and well known [1];
however, the complexity of this computation is proportional to n2m,
which makes it impractical unless m is small.

In the examples, we will assume that the channel is defined by

Yk = ~Xk + Zk (3)

with

~Xk

1; if Xk = 0

�1; if Xk = 1
(4)

(i.e., binary antipodal signaling) and where Z = Z1; Z2; . . . is white
Gaussian noise (i.e., independent zero-mean Gaussian random vari-
ables) with variance �2.

III. ML ESTIMATION, TRELLIS, AND FACTOR GRAPHS

Let us recall some basic facts. First, we note that the mapping x 7!
[x]k (from sequences to states) is invertible for any k � 0: from the
forward recursion (2) and the backward recursion Xk�m = Xk �
Xk�`, the complete sequence x is determined by its state at any time
k.

Second, we consider the maximum-likelihood (ML) esti-
mate of [X]n. Using the notation yn (y1; . . . ; yn) and
xn (x

�m+1; . . . ; xn), the ML estimate of [X]n is the max-
imum (over all possible states [x]n) of the likelihood function

p(yn j [x]n) = p(ynjxn) (5)

=

n

k=1

p(ykjxk): (6)

For the channel (3), maximizing (6) amounts to maximizing the corre-
lation between ~xn and yn.

Third, we note that the computation of (6) may be viewed as the for-
ward recursion of the BCJR algorithm [14] through the trellis of the
system or—equivalently—as forward-only message passing through
the corresponding factor graph. Let us consider this more closely. In-
stead of factor graphs as in [15], we will use Forney-style factor graphs
as in [16], where edges (or half-edges) represent variables and nodes
(boxes) represent factors. A (Forney-style) factor graph of our system
is shown in Fig. 2. (Add a circle on each edge to obtain a factor graph
as in [15]). As in [16], we use capital letters for unknown variables
and small letters for known (observed) variables. The nodes in the top
row of Fig. 2. represent f0; 1g-valued functions J(sk�1; xk; sk) that
indicate the allowed combinations of old state sk�1 = [x]k�1, output
symbol xk , and new state sk = [x]k . The nodes in the bottom row
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Fig. 2. Factor graph (Forney-style) corresponding to the trellis of the system
in Fig. 1.

Fig. 3. Forward-only message passing through the factor graph of Fig. 2.

of Fig. 2 represent the channel transition probabilities p(ykjxk). As a
whole, the factor graph of Fig. 2 represents the function

p(ynjxn)J(xn; sn) =

n

k=1

J(sk�1; xk; sk) p(ykjxk) (7)

(defined for arbitrary binary sequences xn), where J(xn; sn)
n

k=1
J(sk�1; xk; sk) is the indicator function of valid LFSR se-

quences, which may also be viewed as a uniform prior over all valid
xn.

It then follows from basic factor graph theory [15], [16] that the
a posteriori probability distribution over Sn = [X]n (and thus the
MAP/ML estimate of Sn) is obtained from forward-only sum-product
message passing as illustrated in Fig. 3. Since the trellis has no merging
paths, the sum-product rule for the computation of messages reduces
to a product-only rule and coincides with the max-product rule. By
taking logarithms, the product-only rule becomes a sum-only rule; for
the channel (3), this amounts to a recursive computation of the corre-
lation between ~xn and yn.

IV. SOFT LFSR

Another factor graph for our system is shown (for ` = 1 andm = 3)
in Fig. 4. This factor graph represents the function

p(ynjxn)J(xn) =

n

k=1

�[xk � xk�` � xk�m] p(ykjxk) (8)

where �[�] is the Kronecker delta and where J(xn) = n

k=1
�[xk �

xk�` � xk�m] is the indicator function for valid LFSR sequences ac-
cording to (2).

As this factor graph has cycles, the standard sum-product and max-
product algorithms become iterative algorithms. Such algorithms were
investigated in [12] and [13]. In this correspondence, however, we stick
to (noniterative) forward-only message passing. Since (full-state) for-
ward-only message passing is optimal in Fig. 3, there is hope that
(scalar) forward-only message passing in Fig. 4 might do well also. In
any case, forward-only message passing in Fig. 4 amounts to a simple
recursion, which may be interpreted as running the received sequence
Y through the “soft LFSR” circuit of Fig. 5. The quantities �A;k; �B;k ,
and �k in Fig. 5 are the messages indicated in Fig. 4. Note that the same

Fig. 4. Factor graph corresponding directly to Fig. 1.

Fig. 5. Computation of messages in Fig. 4 by a “soft LFSR.”

message �k is sent along two edges out of the equality check node cor-
responding to Xk .

The computation of these messages (as indicated in Fig. 5) is a stan-
dard application of the sum-product or max-product rules [16]. Each
message represents “pseudoprobabilities” ~p(0) and ~p(1), e.g., in the
form ~p(0)=~p(1) or ~p(0) � ~p(1). For the latter representation, the ex-
plicit sum-product update rules are as follows:

Initialization: �k = 0 for k = �m+ 1;�m+ 2; . . . ; 0.
Recursion (for k = 1; 2; 3; . . .):

�A;k =
p(ykjxk = 0)� p(ykjxk = 1)

p(ykjxk = 0) + p(ykjxk = 1)
(9)

forAWGN
=

exp(2yk=�
2)� 1

exp(2yk=�2) + 1
(10)

�B;k = �k�` � �k�m (11)

�k =
�A;k + �B;k

1 + �A;k � �B;k
(12)

Equation (9) holds for a general memoryless channel while (10) is the
specialization to the channel specified at the end of Section I. At any
given time k, an estimate of Xk is obtained as

X̂k

0; if �k � 0

1; if �k < 0
(13)

and [X̂]k = (X̂k�m+1; . . . ; X̂k�1; X̂k) is an estimate of the state
[X]k.

The sum-product update rules for the case where the messages rep-
resent the ratio ~p(0)=~p(1) are given in the Appendix together with the
max-product rules and the analog LFSR of [3].

Simulation results for maximum-length LFSR sequences with
memory m = 15 and m = 31 are given in Figs. 6–8. All these figures
show plots of the probability of synchronization

Psynch(k) P ([X̂]k = [X]k) (14)

either versus the time index k or versus the signal-to-noise ratio 1=�2

where �2 is the noise variance.
As is obvious from these plots (and from similar plots in [4], [5],

[9]) the soft LFSR quickly achieves synchronization for sufficiently
low noise power (up to about 0 dB) but fails for high noise power. It
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Fig. 6. 1�P (k) for the LFSR with m = 15 (` = 1) at SNR = 0 dB. Algorithms (in the order of increasing performance): G.-G. soft LFSR [3]; sum-product
soft LFSR; max-product soft LFSR; maximum likelihood (ML).

Fig. 7. 1� P (k) for the LFSR with m = 31 (` = 3) for three different signal-to-noise ratios: SNRs = �2:92 dB (� = 1:4), SNR = 0 dB (� = 0), and
SNR = 4:44 dB (� = 0:6). Algorithms: max-product soft LFSR and sum-product soft LFSR.

is remarkable that the max-product algorithm gives better performance
than the sum-product algorithm, but the difference is small.

We also note that better performance can be achieved both with
more complex forward-only message passing [9], [10] and with iter-
ative message passing, cf. [12], [13].

V. A CONTINUOUS-TIME PSEUDORANDOM GENERATOR

We now proceed to an analog of Figs. 1 and 5 in continuous time. Our
proposal for a continuous-time analog of Fig. 1 is shown in Fig. 9. The

signal X(t) in Fig. 9 takes values in the set f+1;�1g. The multiplier
in Fig. 9 corresponds to the mod-2 addition in Fig. 1.

How should we translate the delay cells in Fig. 1 to continuous
time? An obvious approach would be to simply translate them into
continuous-time delay cells. However, ideal continuous-time delay
cells cannot be realized by real circuits (except perhaps in optics);
even a delay line (e.g., a piece of wire) has a low-pass characteristic.

We therefore choose to replace the discrete-time delay cells of Fig. 1
by low-pass filters with transfer functions H1(s) and H2(s) as shown
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Fig. 8. 1 � P (k = 100) versus SNR for the LFSR with m = 15 (` = 1). Algorithms (in the order of increasing performance): G.-G. soft LFSR [3];
sum-product soft LFSR; max-product soft LFSR; maximum likelihood (ML).

Fig. 9. Continuous-time analog to Fig. 1 with low-pass filters instead of delay
cells.

in Fig. 9. Since the output signal of such filters is not restricted to
f+1;�1g, we introduce threshold elements between the filter outputs
and the multiplier, which reduce the filtered signals to their sign (+1 or
�1). These threshold elements have no counterpart in Fig. 1 (and will
create a small problem in the receiver).

The memoryless channel in Fig. 1 is translated into the additive white
Gaussian channel shown in Fig. 9.

The type of signal X(t) generated by the circuit of Fig. 9 is illus-
trated in Fig. 10 (top). From our simulations, it appears that the signal
X(t) is generically periodic. The actual signal depends, of course, on
the two filters. In our examples, the first filter (with transfer function
H1(s)) is a fifth-order Butterworth filter with �3 dB frequency 1.6
kHz, and the second filter (with transfer function H2(s)) is a cascade
of six such filters. With these filters, the circuit of Fig. 9 is a dynamical
system with a 35-dimensional state space. The resulting signal X(t) is
periodic with a period of 34 ms, 10 ms of which are shown in Fig. 10
(top).

It should be emphasized that, at present, we do not have a theory
of such circuits and we cannot predict the period of the generated se-
quence X(t). However, our simulation experiments (e.g., in [17]) sug-
gest that a long period—“long” meaning many zero-crossings—re-
quires a high-dimensional state space.

VI. CIRCUIT THAT LOCKS ONTO THE PSEUDORANDOM SIGNAL

A continuous-time analog to the soft LFSR of Fig. 5 matched to the
pseudorandom generator of Fig. 9 is shown in Fig. 11. The linear fil-
ters H1(s) and H2(s) in Fig. 11 are identical to those in Fig. 9. All
signals in Fig. 11 should be viewed as approximations of expectations
of the corresponding signals in Fig. 9 (conditioned on the previous ob-
servations). Note that, for f+1;�1g valued signals, the mean coincides
with the difference ~p(+1)� ~p(�1). It follows that the multiplier3 in
Fig. 11 computes (the continuous-time analog of) the message �A;k(t)
according to (11); the box4 in Fig. 11 computes (the continuous-time
analog of) the message �k according to (12); and the box5 computes
(the continuous-time analog of) the message �A;k according to (10).
All these computations can be done by simple transistor circuits as de-
scribed in [18]–[20] (where the pseudoprobabilities ~p(+1) and ~p(�1)
are represented by a pair of currents).

Consider next the filtered signals. Let S1(t) denote the output signal
of the filter H1(s) in Fig. 9 and let h1(t) be the impulse response of
that filter (i. e., the inverse Laplace transform of H1(s)). We thus have

S1(t) =
1

�1

h1(� )X(t� � )d� (15)

and

E[S1(t)] =
1

�1

h1(�)E[X(t� � )] d� (16)

where the expectation is a (time dependent) ensemble average based
on the (time dependent) pseudoprobabilities ~p(+1) and ~p(�1). It fol-
lows that the output of the filter H1(s) in Fig. 11—which is given by
the right-hand side of (16)—is the expected value of S1(t). In other
words, all signals in Fig. 11 may be viewed as (approximations of) ex-
pectations of the corresponding signals in Fig. 9.
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Fig. 10. Top: example of pseudorandom signal X(t) generated by the circuit of Fig. 9. Middle: noisy signal Y (t) as in Fig. 9 at SNR = 0 dB. Bottom: measured
output signal X̂(t) of the circuit of Fig. 11 fed with Y (t).

Fig. 11. Continuous-time analog of Fig. 5.

So far, all computations have been locally exact in the same sense as
in the discrete-time case (i.e., ignoring cycles in the factor graph). This
fails, however, for the threshold elements in Fig. 9: the (instantaneous)
expectation of the output signal of such a threshold element is not de-
termined by the (instantaneous) expectation of its input signal. At this
point, however, practical considerations strongly suggest to implement
the boxes 1 and 2 by the circuit of Fig. 12. This circuit accepts as
input a voltage and produces as output two currents I+ and I

�

propor-
tional to ~p(+1) and ~p(�1), respectively.

This same circuit is also used to implement the box5 exactly (where
the amplification� depends on the SNR and on the temperature). As an
implementation of1 and2 , the circuit is an approximation; it would
be exact (for the correct choice of �) if the distribution of the filtered
signals—more precisely, the full sum-product message at the input of
the soft-threshold elements—would be the logistic distribution

f(x) =
1

� e + e
�

2
(17)

Fig. 12. Differential transistor pair used for blocks1 ,2 , and5 .

with mean � and variance ��=
p
3 [21, Appendix E]. In our experi-

ments, the amplification � of these circuits was manually adjusted for
the best performance.

VII. SOME MEASUREMENTS

Simulation results of analog circuits are often subject to doubt con-
cerning their robustness with respect to nonidealities. We therefore
built the system of Fig. 11 as an actual (clockless) electronic circuit
with discrete components. The filters were realized as active RC filters
with integrated operational amplifiers.

For the measurements, the clean signal X(t) as well as the noisy
signal Y (t) were created by simulating the circuit of Fig. 9 on a (dig-
ital) computer; the noisy signal Y (t) was then passed as input to the
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Fig. 13. Average squared error versus time after switching the transmission on.

electronic realization of Fig. 11. A typical measured output signal X̂(t)
is shown in Fig. 10 (bottom).

Some measurements of this system are given in Figs. 13–15. For the
measurements of Figs. 13 and 14, the signal Y (t) is replaced by a con-
stant signal with value �1 for t < 0. Both figures show the squared
error (SE) (X̂(t)�X(t))2 averaged, first, over a sliding window and
then, over a number of experiments. Fig. 13 shows the SE (averaged
over 10 ms and over five experiments) versus the time t; Fig. 14 shows
the SE (averaged over 1 s and over five experiments) versus the SNR at
time t = 4 s (which is the steady state). Note that the receiver achieves
good synchronization for an SNR down to about 0 dB. Not surpris-
ingly, a signal with a longer period (top in Fig. 14) is more difficult to
synchronize than a signal with a shorter period (bottom in Fig. 14).

It is instructive to observe what happens when the input to the re-
ceiving circuit is switched off for a while as illustrated in Fig. 15. Be-
fore the interruption, the receiver is synchronized. The signal Y (t) is
then masked (i.e., overwritten by zero) for 20 ms. During the interrup-
tion, X(t) and X̂(t) drift apart and the averaged SE increases. The
figure shows the signals X(t) and X̂(t) around the critical moment
when Y (t) is switched on again.

VIII. CONCLUDING REMARKS

Gershenfeld and Grinstein demonstrated the synchronization of
LFSR sequences (both in discrete time and in continuous time) by
an “analog LFSR,” which was obtained by embedding the discrete
state space of the LFSR into a larger continuous state space. In this
correspondence, we derived such dynamical systems from message
passing algorithms for statistical state estimation. First, we noted that
the soft LFSR proposed by Yang and Hanzo may be obtained by
forward-only message passing through a factor graph. Second, we

proposed a new continuous-time analog of both the LFSR and the soft
LFSR that can be realized as a practical electronic circuit. We have
thus established aconnection between statistical state estimation and
the phenomenon of entrainment of dynamical systems. It follows that
dynamical systems (e.g., electronic circuits) with better entrainment
capabilities may be obtained from more powerful (more complex)
message passing algorithms.

APPENDIX I
ALTERNATIVE MESSAGE UPDATE RULES FOR THE SOFT LFSR

For the convenience of the reader, we explicitly state all computa-
tions in the soft LFSR for an alternative (more standard) version of the
sum-product algorithm, for the max-product (min-sum) algorithm, as
well as for the analog LFSR of Gershenfeld and Grinstein.

A. Sum-Product LFSR for Likelihood Ratio Representation

If the messages represent the ratio ~p(0)=~p(1) of the pseudoproba-
bilities, the sum-product update rules of the soft LFSR are as follows.

Initialization: �k = 1 for k = �m+ 1;�m+ 2; . . . ; 0.
Recursion (for k = 1; 2; 3; . . .):

�A;k =
p(ykjxk = 0)

p(ykjxk = 1)
(18)

for AWGN
= exp(2yk=�

2) (19)

�B;k =
1 + �k�` � �k�m
�k�` + �k�m

(20)

�k = �A;k � �B;k (21)
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Fig. 14. Average squared error in steady state versus SNR. Dashed curve: pseudorandom signal with shorter period (7 ms instead of 34 ms, achieved withH (s) =
H (s) instead of H (s) = H (s) ).

At any given time k, an estimate of Xk is obtained as

X̂k

0; if �k � 1

1; if �k < 1
(22)

and [X̂k] = (X̂k�m+1; . . . ; X̂k�1; X̂k) is an estimate of the state
[Xk].

B. Max-Product Soft LFSR

We state the max-product soft LFSR [15], [16] for the case where
the messages represent ln(~p(0)=~p(1)).

Initialization: �k = 0 for k = �m+ 1;�m+ 2; . . . ; 0.
Recursion (for k = 1; 2; 3; . . .)

�A;k = ln
p(ykjxk = 0)

p(ykjxk = 1)
(23)

for AWGN
= 2yk=�

2 (24)

j�B;kj = minfj�k�`j; j�k�mjg (25)

sgn(�B;k) = sgn(�k�`) � sgn(�k�m) (26)

�k = �A;k + �B;k (27)

where sgn(x) denotes the sign of x. Finally, we have

X̂k

0; if �k � 0

1; if �k < 0
(28)

In fact, (24) may be replaced by

�A;k = yk (29)

which amounts to multiplying all messages by �2=2 and does not
change the estimate (28).

C. Analog LFSR by Gershenfeld and Grinstein

In [3], Gershenfeld and Grinstein obtained a discrete-time “analog”
LFSR by embedding the discrete dynamics of the LFSR into a contin-
uous state space. They showed that such an analog LFSR entrains to a
LFSR sequence even if the latter is modulated by a weak data signal.
An extension of this approach to continous time (using ideal contin-
uous-time delay cells) is also given in [3]. In the setup of this corre-
spondence, the analog LFSR of [3] can be described as follows.

Initialization: �k = 0 for k = �m+ 1;�m+ 2; . . . ; 0.
Recursion (for k = 1; 2; 3; . . .):

�A;k = yk (30)

�B;k = cos �
1� �k�`

2
+

1� �k�m
2

(31)

�k = (1� �)�B;k + � �A;k (32)

or, alternatively

�k =
�B;k if k�A;kj � 1j > �

(1� �)�B;k + � sgn(�A;k) otherwise
(33)
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Fig. 15. Resynchronization example with modified Y (t) (top), sliding-window squared error (2nd from top), X(t) (2nd from bottom), and X̂(t) (bottom) at
SNR = 0 dB. The plots of X(t) and X̂(t) are zoomed to the marked interval around t = 4:02 s.
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and

X̂k

0; if �k � 0

1; if �k < 0
(34)

In this formulation (and differing from [3]), the “hard” logical values
0 and 1 are represented as +1 and�1, respectively. It should be noted
that [3] does not explicitly consider noise at all.

In our simulations, we used (33) with � =1 and optimized � (� 0:4

for large SNR).
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Explicit Loss Inference in Multicast Tomography

Nicholas G. Duffield, Fellow, IEEE, Joseph Horowitz,
Francesco Lo Presti, and Don Towsley, Fellow, IEEE

Abstract—Network performance tomography involves correlating
end-to-end performance measures over different network paths to infer
the performance characteristics on their intersection. Multicast based
inference of link-loss rates is the first paradigm for the approach. Existing
algorithms generally require numerical solution of polynomial equations
for a maximum-likelihood estimator (MLE), or iteration when applying
the expectation maximization (EM) algorithm. The purpose of this note is
to demonstrate a new estimator for link-loss rates that is computationally
simple, being an explicit function of the measurements, and that has the
same asymptotic variance as the MLE, to first order in the link-loss rates.

Index Terms—End-to-end measurement, link-loss rates, statistical
inference.

I. INTRODUCTION

A. Summary

Network tomography is becoming a rapidly established discipline.
One branch of this focuses on the development of statistical techniques
for inferring internal network properties, such as link-loss rates [2],
[4], [1], link delay statistics [7], [14] and topology [6], [9], based on
end-to-end packet measurements. In this correspondence, we focus on
the loss inference problem where loss observations are taken at the
leaves of a tree over which packets are multicast. The current solution
to this inference problem relies on obtaining maximum-likelihood es-
timates (MLEs) of link-level loss rates. In general, this requires finding
the roots of polynomial equations associated with the internal nodes
in the tree where the polynomial degree corresponds to the branching
factor of the associated node. Iterative solutions via the EM algorithm
can also be obtained.

In this correspondence, we derive a simple explicit formula for the
link loss rate estimates. Although they do not correspond to the MLEs,
the estimators are consistent, i.e., they converge to the true loss rates
as the number of measurements grows. Furthermore, the asymptotic
variance of the explicit estimator equals that of the MLE to at least first
order in the loss rates.

In the remainder of this section we describe some related work. Sec-
tion II defines the underlying model for multicast loss inference. The
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